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Automating Surgical Peg Transfer: Calibration With
Deep Learning Can Exceed Speed, Accuracy,
and Consistency of Humans
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Danyal Fer, Thomas Low, and Ken Goldberg™, Fellow, IEEE

Abstract—Peg transfer is a well-known surgical training task
in the Fundamentals of Laparoscopic Surgery (FLS). While
human surgeons teleoperate robots such as the da Vinci to
perform this task with high speed and accuracy, it is challenging
to automate. This paper presents a novel system and control
method using a da Vinci Research Kit (dVRK) surgical robot and
a Zivid depth sensor, and a human subjects study comparing per-
formance on three variants of the peg-transfer task: unilateral,
bilateral without handovers, and bilateral with handovers. The
system combines 3D printing, depth sensing, and deep learning
for calibration with a new analytic inverse kinematics model
and time-minimized motion controller. In a controlled study of
3384 peg transfer trials performed by the system, an expert
surgical resident, and 9 volunteers, results suggest that the
system achieves accuracy on par with the experienced surgical
resident and is significantly faster and more consistent than the
surgical resident and volunteers. The system also exhibits the
highest consistency and lowest collision rate. To our knowledge,
this is the first autonomous system to achieve “superhuman”
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performance on a standardized surgical task. All data is available
at https://sites.google.com/view/surgicalpegtransfer

Note to Practitioners—This paper presents a new approach to
calibrating cable-driven robots based on a combination of 3D
printing, depth sensing, inverse kinematics, convex optimization,
and deep learning. The approach is applied to calibrating the da
Vinci, commercial surgical-assist robot, to automate a standard
“pick and place” task. Experiments suggest that the resulting
system matches human surgical expert performance in speed
and accuracy and significantly outperforms humans in terms of
consistency. All details on the system including CAD models,
code, and user study data are available online.

Index Terms— Calibration, depth sensing, robot Kkinematics,
medical robots and systems, model learning and control, task
automation, trajectory planning.

I. INTRODUCTION

T IS widely recognized that minimally invasive surgery

can reduce post-operative patient pain and length of stay
in the hospital [1]. Robotic Surgical Assistants (RSAs) such
as the da Vinci improve ergonomics so that surgeons can
perform minimally invasive surgery with improved dexterity
and visualization through local teleoperation [2]. RSAs also
have potential to actively assist surgeons using supervised
autonomy of specific subtasks under close supervision to
reduce surgeon fatigue and tedium [3], [4]. RSAs are cable-
driven to fit within narrow abdominal portals, introducing
hysteresis and tracking errors that make it challenging to
automate surgical subtasks [5]-[8]. These errors are difficult
to detect and track because encoders are located far from
the joints. We present a novel approach to automating a
high-precision surgical subtask by leveraging recent advances
in depth sensing, recurrent dynamics modeling, and trajectory
optimization.

We consider peg transfer, a standardized task from the
Fundamentals of Laparoscopic (FLS) [9] surgeon training
suite. The task setup is shown in Fig. 1. This paper makes
5 contributions:

1) The deep recurrent neural network (RNN) models applied
in Hwang et al. [10] require training data consisting of trajec-
tories that are similar to those encountered in the target task,
so using a different trajectory distribution for training results in
a performance drop. In this paper, we densely sample states on

1545-5955 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: DGIST. Downloaded on May 12,2022 at 01:23:52 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-9190-7876
https://orcid.org/0000-0003-1841-5071
https://orcid.org/0000-0001-6747-9499

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

1.6 mm

Fig. 1. Automated peg-transfer task: We use the da Vinci Research
Kit (dVRK) robot from Intuitive Surgical with two arms. The blocks, pegs,
and peg board are monochrome to simulate a surgical setting. The dimensions
of the pegs and the blocks are shown in the lower left, along with a top-down
visualization of the peg board to the lower right. The robot takes actions based
on images taken from a Zivid depth camera, installed 0.5 m from the task
space and 50 © inclined from vertical.

randomly-generated trajectories for training, and demonstrate
that this achieves comparable performance on peg transfer
without requiring task-specific trajectories, by interpolating the
task trajectory of the robot at the same sampling interval as
the trajectory for training.

2) While Hwang et al. [10] and Paradis ef al. [11] are
able to meet human-level success rates on the peg transfer
task, these approaches are 1.5x to 2x slower than a skilled
human operator, respectively. In this paper, we optimize the
robot arm trajectories using convex optimization. Furthermore,
while human operators may have trouble executing multiple
tasks simultaneously, a robot can parallelize task computation
and execution using multiple concurrent processes. In con-
trast, prior work [12] considers only a basic bilateral setup
without coordination between the arms, resulting in slower
performance.

3) A novel closed-form solution that allows for fast inverse
kinematics (IK) calculation. General IK solvers typically treat
this problem as an iterative optimization problem and thus may
take many iterations to converge to a solution. We observe
that a closed-form analytic solution exists due to the special
kinematic constraints of the surgical robot. This method can
be applied to any 6 DoF surgical manipulator with Remote
Center of Motion (RCM) mechanism.

4) The full FLS peg-transfer task that human surgeons train
on requires the blocks to be handed over from one arm to
the other before placing them onto the pegs. This paper also
considers handovers, the full FLS peg-transfer task.
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5) A detailed user study suggesting that the fully
autonomous system achieves significantly fewer collisions and
greater consistency than humans.

II. RELATED STUDIES
A. State Estimation

Trained human surgeon controls RSAs via teleoperation
and compensates for cable-related effects by observing and
reacting to robot motion. Surgical tasks often require positional
accuracy of the end-effector in the workspace within 2 mm,
and this is difficult to autonomously obtain with cable-driven
surgical arms due to effects such as cable tension, cable stretch,
and hysteresis [13], and such effects are exacerbated with
flexible arms [14] and usage-related wear. To compensate for
these errors, prior methods use techniques such as unscented
Kalman filters to improve joint angle estimation [7] by estimat-
ing cable stretch and friction [6], or by learning fixed offsets
for robot end-effector positions and orientations [5], [8], [15].
Peng et al. [16] proposed a data-driven calibration method for
the Raven II surgery robot that uses three spheres and four
RGB cameras to estimate the end-effector position.

In contrast to the previous works, we consider the problem
of estimating the joint configuration, which can be incorpo-
rated more directly in collision checking, and we also learn to
predict the commanded input given a history and desired joint
angle.

B. Surgical Task Automation

No surgical procedures in clinical settings today use auton-
omy, but researchers have studied automating surgical subtasks
in laboratory settings. For example, prior researchers have
shown promising results in automating peg transfer [12],
[17]-[21], suturing [22]-[26], debridement [15], [27], clear-
ing the surgical field [28], tumor ablation [29], and cutting
gauze [30], [31]. There are attempts to automate surgical sub-
tasks in in-vivo setting such as steering of endoscope [32], [33]
and intestinal anastomosis with commercial robot manipula-
tors and a specialized needle tool [34].

C. Surgical Peg Transfer Task

The FLS consists of 5 tasks designed to train and evaluate
human surgeons performing minimally invasive surgery, such
as peg transfer, precision cutting, ligating loop, and suturing
with either extracorporeal or intracorporeal knots. In this
paper, we focus on the first task, peg transfer, in which the
goal is to transfer six triangular blocks from one half of a
pegboard to the other, and then back (Fig. 2). For each block,
this process requires grasping the block, lifting it off of a peg,
handing it to the other arm, moving it over another peg, and
then placing the block around the targeted peg. Since each
block’s opening has just a 4.5 mm radius, and blocks must be
placed on cylindrical pegs which are 2.25 mm wide, the task
requires high precision, making it a popular benchmark task
for evaluating and training human surgeons [35]-[38].

Rosen and Ma [17] were the first to automate a version
of peg transfer. Using one robot arm from the Raven II
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Fig. 2. Three variants of the FLS peg transfer task. We consider the three
variants of peg transfer. The pegs and blocks are 3D-printed in red ABS at
the same scale as the commercial FLS training system to be consistent and
similar in color to in-vivo conditions. (a) Unilateral: block transfers performed
by a single da Vinci arm. (b) Parallel Bilateral: block transfers performed by
two arms in parallel. (c) Bilateral Handover: block transfers performed by
both arms, with a hand-off between arms during each transfer.

surgical robot [39] to transfer 3 blocks to the nearest pegs
in one direction, they compared performance over 20 trials
of the autonomous robot versus a human teleoperator. Their
results suggested that the autonomous robot attained a 93.3 %
block transfer success rate with an average of 8.3 seconds per
transfer, as compared to the human with 100.0 % with an
average of 16.3 seconds per transfer. In this work, we focus
on the bilateral peg transfer task with 12 block transfers across
both directions and handovers.

Hwang et al. [12] developed the first system for a sur-
gical robot to autonomously perform a variant of the six
block FLS peg-transfer task using depth sensing and manual
checkerboard-calibration. The system moved the robot via
open loop commands to pick and place blocks from one side
of the peg board to another without handover of the blocks
between the two arms. In subsequent work, Hwang et al. [10]
improved the accuracy of the physical robot using deep
dynamics models trained on robot trajectories collected using
fiducial markers and depth sensing, and improved the percep-
tion pipeline for peg transfer.

Paradis ef al. [11] proposed Intermittent Visual Servoing
(IVS), a paradigm for using a coarse open-loop controller
in free space, while using learned visual servoing when the
robot is close to an area of interest, such as when picking or
placing a block. Paradis et al. learned visual servoing from
demonstrations, and in peg-transfer experiments, showed that
the learned model can be robust to tool changes. However, IVS
incurred additional time delays during the correction phase.

III. PROBLEM DEFINITION
A. Task Definition

We use red 3D-printed blocks and a 3D-printed pegboard
(see Fig. 1). The red setup simulates a surgical environment
where blood is common and surgeons must rely on subtle
visual cues to perceive the state. To perform the task, the robot

moves each of the 6 blocks from a peg on the left to a peg
on the right, then moves all 6 back again. Unlike prior work,
we also consider bilateral variants of this task with handovers
between two arms.

We define the peg-transfer task as consisting of a series of
subtasks with associated success criteria:

1) Pick: the robot grasps a block and lifts it off a peg.

2) Handover: the robot passes a block from one arm to

the other.

3) Place: the robot places a block onto a target peg.

We define a transfer as a successful pick followed by a
successful place with a handover for Bilateral Handover. The
6 blocks are initially placed on the left 6 pegs of the pegboard.
In a trial of the peg-transfer task, the robot attempts to move all
6 blocks to the right 6 pegs and then moves them back. A trial
is considered successful if all 12 transfers are successful.
A trial can have fewer than 12 transfers if failures occur during
the first 6 transfers and a block is irrecoverable, which is not
considered as a successful trial.

We define the following variants of the peg-transfer task,
illustrated in Fig. 2:

1) Unilateral: all 12 transfers are performed by a single

arm. This is the variant considered in most prior work.

2) Parallel Bilateral: each transfer is performed by a single
arm, but either arm can be used. This means that two
transfers can be performed simultaneously.

3) Bilateral Handover: each transfer is performed by both
arms and consists of a pick followed by a handover fol-
lowed by a place. Subsequent transfers can be pipelined
as a pick can be performed for the next block while
a place is performed for the current block. This is the
standard surgeon training task in the FLS curriculum,
though humans do not typically use pipelining.

We consider the Bilateral Handover variant of the peg-
transfer task for the first time in an automated setting. The
Bilateral Handover and Parallel Bilateral variants require pre-
cise coordination between two arms to avoid collisions and to
efficiently execute handovers if needed.

We evaluate the system with three peg-transfer tasks. We use
a bilateral dVRK [40], [41] with two large needle driver tools.
We use a Zivid One Plus S RGBD camera mounted 0.5 m from
the workspace. The camera has roughly a 50° vertical incline.

B. Notation

Let g, be the robot’s physical configuration, and define
Cp, C R® to be the set of all possible configurations. The
robot’s commanded configuration is g, € C. C R®, which
is equal to the encoder readings if the robot is allowed to
come to a rest. This can differ from qp because the encoders
are located at the motors and away from the joints. The
discrepancy between the joint configuration measured by the
encoders and the true joint configurations is due to cabling
effects.

Subscripts  index specific ~ joints  in vectors,
e.g., q;: [gp,1 -+ gp,6l. For ease of readability, we suppress
the , and . subscripts when the distinction is not needed.
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We visualize the six joints g, -- - , g6 in Fig. 8. Let

n=" g eT

c

(1

encode the prior trajectory information of the robot up to
time . We would like to estimate the function

f:CxT—C, (2)

which is a dynamics model that maps the current command at
time ¢ and prior state information to the current physical con-
figuration of the arm. At execution time, we use a controller
derived from f by approximately inverting it for a desired
output waypoint.

It is difficult to derive an accurate model for the dynamics
f that incorporates hysteresis, so we learn a parametric
approximation using a deep neural network fp ~ f from a
finite sequence of samples D = ((¢g,, ‘Ip(t)))jv_o.

IV. MATERIALS AND METHODS

A. Robot Calibration Using 3D Printed Fiducial Markers
and Depth Sensing

We use both RGB and depth sensing to track the sphere
fiducials and consider historical motions in the estimation
of joint angles, which enables compensation for hysteresis
and backlash-like effects. Furthermore, we design practical
controllers using these models and benchmark the result of
applying the proposed calibration procedure on a challenging
peg transfer task.

We calibrate the robot by learning fy from data, which we
can then use to more accurately control the robot. We start
by sending a sequence of commands ¢, and tracking the
physical trajectories of 3D printed fiducial markers attached
to the robot. We then convert the marker’s positions to
gp using kinematic equations. After collecting a dataset of
commands and physical configurations, we train a recurrent
neural network to minimize the empirical risk for the mean
square error (MSE) loss function.

It is challenging to accommodate additional encoders or
sensors due to the confined space inside the surgical end
effector. In this work, to estimate g,, we build on our prior
work [10] and use an RGBD camera to track fiducials of
colored spheres attached to the end effector (shown in Fig. 3).
The two spheres on the shaft allows us to decouple the first
three joints (g1, g2, g3) from the last three (g4, g5, g6) and thus
to accurately estimate them excluding the cabling coupling.
We design and place the four spheres on the jaw where they
cannot overlap in the camera view within the working range
of joints. Given the point clouds provided by the camera,
we cluster the six groups of point sets by masking the color
and size of each sphere. We then calculate each sphere’s 3D
position by formulating a least-squares regression.

We calculate six joint angles of the robot based on the
dVRK kinematics. Since the end position of the tool shaft
is only dependent on the first three joints, (g1, g2, g3), we can
get the inverse function in combinations of the end position,
which simply extend the two measured positions of spheres.
We obtain the last three joints, (g4, g5, q¢), by equating the
rotation matrix of the end effector with the rotation matrix

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 3. dVRK calibration using 3D printed fiducial markers. We attach six
fiducial spheres among which two of them on the tool shaft and four on
the jaw. We convert the detected sphere positions into joint configurations
qp based on the dVRK kinematics. Left: The detected spheres are circled in
yellow and the estimated joint configurations are overlaid with green dotted
lines. Right: We cluster the point sets using color masking and the size of
each sphere.

Left Robot Arm (PSM 2) Right Robot Arm (PSM 1)

Fig. 4. Collecting random and smooth trajectories. We define the manipulator
on the right as patient side manipulator] (PSM1) and on the left as PSM2.
We repeat the data collection and calibrate both arms separately, as they
have different cabling characteristics. We collect a dataset of random, smooth
motions consisting of the configuration ¢, estimated from the fiducials and
commanded joint angles g.. The dataset consists of 1355 data points. These
motions are not specifically optimized for the peg transfer task.

measured from the four spheres. The measurement accuracy
is 0.32 mm in sphere detection and less than 0.01 radians in
joint angle estimation.

We collect a training dataset D consisting of random,
smooth motions of the arm, visualized in Fig. 4. This long tra-
jectory is first collected by teleoperating the robot in random,
continuous motions, densely recording the waypoints, and then
replaying them with the fiducials attached. This enables us to
collect ground truth information for trajectories that are not
specific to peg transfer. During the process, we collect the
configuration ¢, estimated from the fiducials and commanded
joint angles g, to compile a dataset D:

D= ((g.". 4, 3)

The dataset consists of N = 1355 data points, and takes
18 minutes to collect. It takes under 1 min to train a model
from the collected data. In the online execution phase, it takes
less than 10 ms to predict the error and to compensate the
motion error. In our prior work [10], we collect roughly the
same amount of data, but from trajectories that consist of long,
jerky motions resembling the peg transfer task, and sparsely
sample waypoints from them. We find that dynamics models
trained on those trajectories are prone to distribution shift
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Left Robot Arm (PSM2)
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Right Robot Arm (PSM1)

IAVAVAW S A WA ALY
PO WAV
MV M
o iRl s A
0 AWM SN A it

WA M W

0 200

— 4c
_qp

400 600
sample number

800 1000

Error identification of joint characteristics: We plot sub-sampled trajectories of the PSM1 and PSM2 from their training datasets which we use to

calibrate the dVRK. Comparing the desired ¢, and measured g, configurations, we observe that the external arm joints (q1, 2, q3) are almost exactly overlaid
and the wrist joints (g4, g5, q6) are the main source of the positioning error of the end effector, while the three joints from the external arm (ql, 2, q3) are

relatively accurate. The quantitative results are shown in Table I.

errors if they are tested on tasks that consist of different
motions from the training distribution. We hypothesize that
we can address the distribution shift by collecting data D in
a more randomized process, but while sampling at a finer-
grained resolution.

From the camera view, we define the manipulator on the
right as Patient Side Manipulator] (PSM1) and on the left as
PSM2. We repeat the data collection and calibrate both arms
separately, as they have different cabling characteristics.

We sub-sample a portion of the previously described dataset
with N = 1000. Fig. 5 presents the desired and measured
trajectory of each joint angle in both cases. We notice that
the three joints of the robot arm, ¢, 1, gp2, and g 3, rarely
contribute to the error compared to the last three joints from
the statistics in TABLE 1. We observe that the three joints of
the surgical tool, gp 4, ¢p,5, and g6, are repeatable and not
affected by the arm joints. In addition, the last two joints are
closely coupled, since g, 5 synchronously moved with g, ¢
despite being commanded to be stationary, and vice versa.
We hypothesize this occurs because these two joints have two
additional cables that extend together along the shaft of the
tool.

To estimate the configuration of the robot’s joint angles g,
without the fiducials attached, we train a function approxima-
tor fy : Cc x T —p, such that fy (¢, 7/) = (}p(’) ~ qp(’).
The model used is a Long Short-Term Memory (LSTM) [42]
with 256 hidden units followed by two more hidden layers
of 256 units. Five prior commands are sup plied as input.
We minimize the mean squared error (MSE) loss function
between the model predictions t}p(’) and ground-truth targets
qp(’) over the training dataset.

Once we train fp, we would like to use it to accurately
control the robot while compensating for the robot’s cabling
effects. At time ¢, the controller takes as input the target

joint configuration qd(t) and history-dependent input 7; and
computes joint configuration command qc(’ ) to get the robot
to that configuration. The controller (Alg. 1) iteratively refines
the command based on the error relative to the target posi-
tion. It evaluates the forward dynamics fp for a candidate

command g, to obtain an estimate of the next configuration
fo (qc(t); 7;). Then, the algorithm modifies the input command
to compensate for the error relative to the target position,
executes the command, then updates the history z,. This
process repeats for M iterations.

Algorithm 1 Control Optimization Algorithm

Require: Target configuration qd(’ ), state estimator fg, number
of iteration M, learning rate o

1: qc(t) < qd(t)

cfor je{l,..., M} do

Aj < g4 — folg. D7)
qc(t) <« qc(t) + aAj

: end for

. return ¢,

Estimate error
Adjust based on error

B. Perception and Grasp Planning

In this section, we discuss how the calibrated and trajectory-
optimized robot perceives the state of the pegs and blocks and
generates a sequence of motions to perform peg transfer.

In our previous works [10], [12], we installed the depth
camera to have a view perpendicular to the task board,
which allows the point sets on the blocks to be obtained by
cropping a depth range. To enable perception from a camera
in a greater variety of poses, we use a point set registration
algorithm, Iterative Closest Point (ICP) [43], which is simple
and computationally efficient.

At the beginning of the task, we register the captured point
clouds from the known 3D model of the pegboard to obtain the
transformation matrix 7 from the camera to the pegboard.
Then, we obtain the 12 peg positions by cropping a height
range with respect to the base frame of the pegboard. Given
the desired peg position and the known height of the block,
we cluster a point set on the block to be transferred and get
a transformation from the camera to the block ;7" using ICP.
Since the transformation from camera to robot {7 is known
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TABLE I
STATISTICS OF ERROR IN THE TWO PATIENT SIDE MANIPULATORS (PSMS)

Left Robot Arm (PSM2) Right Robot Arm (PSM1)
q1 qz q3 qa qs 9e 91 qz qs qa qs qe
(rad) (rad) (m) (rad) (rad) (rad) (rad) (rad) (m) (rad) (rad) (rad)
RMSE | 0.0030 0.0036 0.00051  0.26 0.15 0.17 0.0020 0.0012 0.00015 0.16 0.17 0.21
SD 0.0017 0.0022 0.00030  0.024 0.095 0.099 0.0012 0.00068  0.000086  0.017 0.091 0.12
Max 0.0090 0.0110 0.0013 0.43 0.33 0.43 0.0054 0.0033 0.0045 0.25 0.32 0.45

In both cases, the first three joints have relatively small errors. Joint errors grow as joints get further from the proximal. PSM1 and PSM2 commonly have a
small offset of g, and hysteresis with coupling of g5 and g, which produces errors larger than 0.2 rad.

Fig. 6. Perception pipeline using depth sensing: We use point set registration
to get poses of the pegboard and blocks. We perform a sequence of RGBD
capturing, point set clustering, and registration of the block between each
transfer motion. Left: Peg transfer environment from the inclined camera
view. Right: Point sets of the detected pegs (black) and blocks (yellow),
the registered 3D block model (green), the planned grasping point of the
left arm (blue) and right arm (red). We capture point sets from the inclined
camera and change the view perspective to top-down for better visualization.

from the robot calibration procedure, we finally obtain the
block pose with respect to the robot’s base frame. During the
task, we perform a sequence of RGBD capturing, point set
clustering, and registration of the block between each transfer
motion. These process takes an average of 241 ms per each
block.

After detecting the blocks, we find a best grasp among a
total of the six potential poses per block. We subdivide each
block edge into two potential grasps and pre-calculate the six
grasps for the 3D block model. See Fig. 6 for details. Given
the block poses, we transform these grasping poses using j
and calculate the distance from the peg to find the farthest
point among the poses that allows jo int limits. We avoid
the grasping point behind a peg to decrease the chances of
collision.

C. Non-Linear Trajectory Optimization

In this section, we describe a trajectory time-optimization
to improve the speed of task performance. In prior for-
mulations [44], [45] of pick-and-place trajectory optimiza-
tion, a time-minimized trajectory is found by discretizing
the trajectory into a sequence of waypoints and formulating
a sequential quadratic program that minimizes the sum-of-
squared-acceleration or sum-of-squared distance between the
waypoints. We observe that this prior formulation, while
versatile enough for the peg transfer tasks, can be simplified
to minimizing a sequence of splines defined by up to four
waypoints, and relying on the kinematic design of the robot
to avoid collisions. By reducing to four waypoints, we trade

(1)

()

L

Fig. 7. Optimized trajectory segments for a transfer motion. Each peg transfer
consists of 4 waypoints and the three time-optimized splines between. The
motion starts at waypoint (0) and ends at waypoint (3) with zero velocity.
At waypoints (1) and (2), the splines are connected to ensure C 1 continuity,
where the velocities are selected to minimize execution time.

off some optimality of motion for the reduced computational
complexity of the trajectory optimization.

The objective of this optimization is to minimize the
trajectory motion time. The peg transfer task consists of
12 block transfers, each of which sequences motions that lift
up, translate horizontally, and lower down. Due to the small
clearance between blocks and pegs, the lifting motion for a
block should be parallel to the peg until the block clears the
top of the peg. Lowering the block onto a peg requires a similar
parallel motion (Fig. 7).

When computing a trajectory for the robot, we convert end-
effector poses (e.g., for the pick location) to robot configura-
tion using an inverse kinematic (IK) calculation. General IK
solvers typically treat this problem as an iterative optimization
problem and thus may take many iterations to converge to a
solution. Due to the kinematic design of the dVRK robot,
we observe that a closed-form analytic solution exists that
allows for fast IK solutions.

We apply Pieper’s method [46] to find a closed-form IK
solution. Pieper proved that an analytic solution always exists
for a 6 DoF manipulator under the condition that the last three
axes mutually intersect. Many laparoscopic surgical robots
have a special mechanical constraint, called Remote Center
of Motion (RCM), to constrain movement at a point where
the patient’s incision is positioned. We apply this method by
inversely re-assigning the coordinates as shown in Fig. 8.
We consider the end effector as a base frame. This method
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Frame| Joint Name a a d ]
0 End Effector 0 0 L, 0
1 | ToolYaw | © -90° | 0 s — 90°
2 Tool Pitch Ly -90° 0 qs — 90°
3 | Arminsertion | 0 —90" | qz—Li+1L, 0
4 | ToolRoll | © 0 0 A
5 | ArmPitch 0 90° 0 4, +90°
6 Arm Yaw 0 90° 0 q, —90°
7 Match to Base 0 —90° 0 180°

Fig. 8. Coordinate frames for closed-form inverse kinematics: We follow
the modified Denavit-Hatenberg convention, by inversely re-assigning coor-
dinates to calculate a closed-form IK solution according to Pieper’s method.
We consider the end effector as a base frame.

can be applied to any 6 DoF surgical manipulator with RCM
motion constraint.

By using the closed-form IK solution, we further speed
up trajectory computation time. Our IK solution achieves an
average compute time of 0.8+0.2 ms, while the numerical
optimization method, which uses 1,000 random joint config-
urations, takes 116.3+12 ms. We use the SciPy module in
Python for the comparison.

We define fik : SE(3) — R® as the IK function, w here
the input is the pose of the end-effector and the output is the
robot configuration:

fIK(|:§ iD=[q1 @ 4 a a5 g6

and from Pieper’s method, we derive the following:
tinu — RTt
g6 = arctanZ(t)’;"“, té'”’ — Ly)

p = —La+/ti™) + (@im — Ly)

g3 = L1 — Lo+ /(") + p?

inv

gs = arctan2(—t,"", p)
sings - Sinqe —coSqe  COSq5Singe
Rg = cosqs 0 —sings
cosqe - Sings  Sinqe  COSqs - COSqe
3 _ pb’  pT
R; =R; -R

g2 = sin” (R3[3,2])
q1 = arctan2(—R3 (3, 11, R3[3, 31)
qa = arctan2(R3 2,21, R3[1,2])

Here we use the notation R[1, 2] to refer to the coefficient at
row 1 and column 2 of the matrix R, and subscripts in #, and
ty to refer to the respective coefficients of the vector t. The
scalars Ly, Ly, L3, and L4 represent physical measurements
of the dVRK, visualized in Fig. 8.

We propose an optimization based on a cubic spline inter-
polation in the joint space to compute a fast, smooth, and
feasible trajectory to do the peg-transfer motions. To com-
pute the spline, we define a cubic polynomial based on the
configuration q and configuration-space velocity v at the start
(gD, vD) and end (gD, v(+D) of each motion segment i.
We then combine a sequence of splines to traverse through
the whole peg-transfer motion. At each point where one spline
ends and the next starts, we ensure C' continuity by setting
the configuration and velocity of the end point. We define a
spline fypiine as a function of time ¢, segment parameterized
start and end points, and duration of the spline segment ¢; as
follows:

(@) (i+1)
|4 q _ 3 2
fspline (tv |:v(i) i| s |:v(i+l):| ,ti) =at’ +bt“+ct+d
where,

yitD 4y 2 (g0 — gl+D)

a =
(#:)* t)*
1yt @ 3
b= 2 2%
1
c=v®
d= q(i)

For a peg-transfer motion we define a trajectory by 4 way-
points (and therefore 3 segments): (0) the pose in which
the robot is initially grasping the block on its starting peg,
(1) the pose with the block lifted to clear its starting
peg, (2) the pose with the block vertically over its ending peg,
and (3) the pose with the block lowered onto the ending peg
and about to release its grasp (Fig. 7).

The configurations of these waypoints are all defined by the
IK solution and denoted by (¢, ¢", ¢®, ¢®). We denote
the velocities at these waypoints by (v, y(D, y@ y3)) The
velocity at waypoints (0) and (3) is zero. The velocities
at (1) and (2) are in the direction of lifting and lowering
respectively, with their magnitude optimized through gradient
descent. We let #; denote the duration of segment i. For a
single transfer motion, we thus have the following trajectory
sequence:

ftransfer (t; !1(0), q(l), !1(2), !1(3), V(l), v(2), Io, 11, t2)

(0) 1)
fspline t; qO , 3(1) , Iy if t <t
1) (2)
q q
i t —1o; s ,t
B fspltne 0 v(l) :| v(z) 1)

ifto<t<th+t

(@) 3
q q
i r—1ty—11; s , 1
fsplme( 0 1 |:V(2):| |: 0 :| 2)

iftg+1 <t
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We compute the direction of the velocity v at (1) and (2) in
joint space by computing the direction of the motion in end-
effector space and transforming it through the inverse of the
Jacobian of the robot at the corresponding configuration, thus:

-1
5 — (Jm) 2

where Z is the direction to lift for (1), and the direction to
lower for (2). In practice, we orient the peg board such that
the pegs are aligned to the z-axis.

To compute the duration of the splines 79, t1, t2, we compute
spline coefficients for integer multiples of 0.01 s, and select
the shortest duration that satisfies all joint velocity and accel-
eration limits. The maximum velocity of the spline occurs at
the root of the second derivative (when the spline’s coefficients
6a + 2b= 0). The maximum acceleration occurs at either end
of the spline (thus 2b or 6at + 2b).

To compute the magnitude of the velocity 4 at (1) and (2),
and thus get the velocity v(D) = 2050 e iteratively take
gradient steps according to a cost function f.,s; defined to
be ty + t; + f» that minimizes the time for each segment
of the trajectory. This algorithm computes the time-optimized
trajectories and is shown in Alg. 2.

Algorithm 2 Optimize Peg Transfer Splines

Require: Waypoints Q = (g(©gNg@¢®), directions

vV = (fz(l), 9(2)), step rate S, maximum iterations
max_iter
12O 07T 0 Initial
guess ;
2! Cprev < Jeos: (@, V, [1(1)1(2)] )
3: for iter € {1, ..., max_iter} do
2 2 2
4 e <~ 22 — BV feost { Q. V, 1@
T
RE Ceurr < feost (@, V, [2(1)2(2)] )
6: if ]ccurr — Cprev| < tolerance tolerance then
7: break
8: end if
9: Cprev < Ccurr
10: end for

11: return AV, 1@

D. Time-Optimal and Jerk-Minimizing Trajectory Refinement

The spline-based optimization computes a trajectory
quickly, but it is by construction, not time-optimal. A time-
optimal trajectory at any moment in time will be at a joint
limit (e.g., velocity and acceleration). However, in the spline-
based optimization, we only compute a maximum of 3 splines,
meaning that velocities and accelerations will tend to smoothly
vary instead of plateauing at a maximum.

To then speed up the trajectory further, we use the spline-
based optimization to warm-start [45] a time-optimizing
sequential quadratic program (SQP). This SQP-based opti-
mization adds additional spline segments while enforcing
motion limits, and successively shortens the time horizon until
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it is detected as infeasible. As such, this SQP formulation fol-
lows closely to that of a grasp-optimized motion planning [44],
though we increase the tolerances to speed up the computation,
and leave grasp optimization to future work.

We compute an SQP to refine each segment from the spline-
based optimization. Each SQP optimizes a non-convex QP of
the following form:

H

1 5
> ‘(am —aVyT
=1
subject to ¢, | =¢q, +v,T +a,T2/2 Vte[0...H)
Viyl =vi+a,T Vtel0...H)
q;,v:,a; in joint limits Vr e [1... H]

argmin
l0-H1 yl0.H] 4[0..H]

q, avoids obstacles Vi e [1...H]

where T is a fixed time interval between each waypoint, and
H is the number of waypoints in the trajectory. We start with
T x (H + 1) equal to the duration of the spline computed
in the spline-based optimization. The objective minimizes the
sum-of-squared jerks computed as the change in acceleration
over time. The first pair of constraint sets enforces consistency
of the dynamics between configuration ¢, velocity v, and
acceleration @ and results constant-acceleration spline between
each waypoint, matching the splines from before. The third
constraint set ensures that the robot remains within the con-
figuration, velocity, and acceleration limits. The last constraint
set avoids obstacles, e.g., block and peg contact.

Since the obstacle avoidance constraints are non-convex,
we linearize them at each the iteration of the SQP solver,
using the previous solution iteration as the linearization point.
This linearization takes the following form:

Jg=p +Jqprev - fFK(qpreu)

where p is the center coordinate (x,y) of the vertical channel
through which the peg must be lifted, frx is the forward-
kinematics function, and J is a Jacobian relating the change
in joint angle to the change in end-effector pose. We assume
that the motion is vertical through z; thus, the constraint only
enforces x and y position. We box-bound this constraint with a
small tolerance and add a linear penalty using slack variables.

Depending on which motion we are optimizing, we vary
this SQP by adding constraints on the boundary conditions.
For example, to lift a block off of a peg, we constrain g, to the
grasp configuration, vop = 0, and g to the configuration over
the peg. We only constrain vy to be within the joint limits,
thus allowing the optimization to have high-velocity at the end
of the motion, where it would then connect to the next spline.
For the next spline, we then set its vo to be the optimized vy
from the previous trajectory. We apply a similar approach to
dropping motions using appropriately set boundary conditions
(i.e., unconstrained starting velocity, stopping at the end of the
motion).

To convert this into a time-optimization, after solving the
SQP we shorten H, and repeat the process, until the solver
detects the SQP as infeasible. We use the shortest H for which
a solution was found. As this process starts with a trajectory
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duration of 7' x H from the spline, if the first SQP is infeasible,
we use trajectory from spline-based optimization.

In practice, setting 7 to the controller frequency of the
dVRK (10 ms), will lead to the shortest trajectory, as it
will changes in accelerations to be applied at the most rapid
interval. However, as this can lead to a large H, it can slow
down the computation. We thus set a value of 7 and H that
balances the compute time and trajectory time, while keeping
T as an integer multiple of the controller frequency. We then
interpolate the solution to the controller frequency using the
dynamics equations from the SQP. The trajectory planning is
done online and the computation takes 103 ms per trajectory
in average.

E. Trajectory Analysis

To analyze the joint and end-effector velocity, acceleration,
and jerk, we record the joint encoders throughout each trial,
and follow and extend a method outlined by Todorov and
Jordan [47]. This method formulates a quadratic polynomial
for each segment of the measured trajectory and includes
velocities and accelerations for each joint measurement. It then
computes a minimization of the velocity and accelerations
across all segments using the nonlinear simplex method.
We modify this method to minimize a Huber loss on the
dynamics equations that explain the measurements, and solve
using a quadratic program solver. This QP takes the form:
Hy—1

2 (u?)2 —u! 41! + 5! +2w)?
=0
—ul +rl+s)

argmin
Y10 H] gl0..Hm]

subject to ¢, | = ¢, +v: T + atzT,ﬁ +ul +r] —s]
vVt €[0...Hy,)
Vil = v +a; Ty +ul +r! —s!
Vi €[0...Hy,)

rl>0, s/ >0Vtel0...Hy,]
r!>0, s{>0Vtel0...Hyl

where H,, is the number of configurations measured, Ty, is the
time interval between measurements, and ¢, is the measured
configuration at time step 7. The slack variables u/, u; form
the quadratic part of the Huber loss, while r?, ry, s?, and s}
are the linear part of the Huber loss. After solving, we then
analyze the velocity and acceleration variables independently,
and compute jerk as the difference between accelerations
divided by T;,. We analyze automated trials using this method
too, as the measurements of executed trajectories may not
precisely match the computed values.

V. PHYSICAL EXPERIMENTS
A. Robot Experiments

For each experiment, we measure robot autonomous perfor-
mance under 3 conditions:
1) Uncalibrated, Unoptimized: This uses the default robot
PID controller that uses encoder estimates to track
trajectories and performs no trajectory optimization.

2) Calibrated, Unoptimized: This uses the calibration pro-
cedure from [10] but does not optimize trajectories
for pick and place and handover. We hypothesize the
calibration procedure will increase the accuracy of the
system, but may not necessarily change its speed.

3) Calibrated, Optimized: This uses both the robot
calibration procedure and the trajectory optimization
techniques. We do not consider trajectory optimiza-
tion without calibration, as high-speed collisions may
damage instruments and we do not expect optimiza-
tion to affect the accuracy of the uncalibrated model.
We hypothesize that this method will be as accurate
as Calibrated, Unoptimized, but result in much faster
motions.

B. Human Subjects Protocol

After obtaining IRB protocol approval, we enrolled
10 human subjects: 6 males, including one surgical resident,
and 4 females with an average age of 26.2.

Except for the surgical resident, they are undergradu-
ate/graduate students or postdoctoral researchers at Univer-
sity of California Berkeley. None of the human subjects
in the volunteer group have experience using the da Vinci
nor performing robot teleoperation. The surgeon is co-author
Dr. Danyal Fer. He has 4 years of general surgery experience,
and has performed over 900 open and minimally invasive
procedures. The human subjects were asked to teleoperate
2 standard master handles to control the two surgical arms and
view the workspace through an endoscopic stereo camera.

We asked 9 volunteers to complete six 12 block transfer
trials for each of the 3 variants of the peg transfer tasks
described in Fig. 2 for a total of 1944 trials. Prior to the
experiment, we give volunteers a short (5 minutes) instruction
on how to control the da Vinci surgical robot. The recording
is started at the beginning of the first trial without practice.
We record the angle and velocity of each joint. The sampling
period of the recording is 10 ms. The experiment takes about
80 minutes per volunteer.

The experimental protocol was approved by the Institutional
Review Board (IRB) and the Committee for Protection of
Human Subjects (CPHS) of the University of California,
Berkeley (2021-02-14049).

C. Experiment Variables and Hypothesis

For each of the three peg transfer versions, we control
the independent variable of robot operator, varying between
human subject (Volunteer, Surgeon) and autonomous control
method (Uncalibrated Unoptimized, Calibrated Unoptimized,
Calibrated Optimized). For each trial, we record dependent
variables of transfer success rate, transfer time, distance
traveled, and collisions for each robot operator. We test the
following hypotheses:

H1) The Calibrated Optimized and Calibrated Unoptimized
versions will achieve similar transfer success rates that are on
par with the surgeon and greater than the volunteers.

H2) The Calibrated Optimized robot will have a lower mean
transfer time than the surgeon who will in turn have a lower
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TABLE 11
UNILATERAL PEG-TRANSFER TASK EXPERIMENTS

Success / Attempts Success Rate (%)

Method Mean Transfer Time (s)
9 Volunteers 12.3
Surgeon 4.7
Robot Uncalibrated, Unoptimized 5.6
Robot Calibrated, Unoptimized 5.7
Robot Calibrated, Optimized 5.2

610/636 95.9
120/120 100.0
26/75 34.7
120/120 100.0
120/120 100.0

The calibrated robot and the surgeon both achieve a 100 % success rate on 10 trials. We define the mean transfer time as the completion time divided by the
number of block transfers. Despite trajectory optimization, the surgeon is still 10.6 % faster than the robot. Factors that delay the automated robot include computing
registration of the block and grasping pose (0.098 s) and calculation of online trajectory planning (0.103 s). These factors are not optimized in this paper, which
suggesting that there is still further room for improvement. The actual motion execution speed of the robot without perception is slightly faster than the surgeon.

TABLE III
PARALLEL BILATERAL PEG-TRANSFER TASK EXPERIMENTS

Success / Attempts Success Rate (%)

Method Mean Transfer Time (s)
9 Volunteers 10.9
Surgeon 4.8
Robot Uncalibrated, Unoptimized 3.6
Robot Calibrated, Unoptimized 35
Robot Calibrated, Optimized 3.0

626/642 97.5
115/118 97.5
37/68 54.4
120/120 100.0
120/120 100.0

The Calibrated, Optimized robot is slightly more successful and 60 % faster than the surgeon. Unlike the unilateral case, even the unoptimized trajectories are
faster than the surgeon, whose mean transfer time (4.8 s) is similar to the time in the unilateral case (4.7 s). This suggests that parallelism is easier for the robot

than for the surgeon.

TABLE IV
BILATERAL HANDOVER PEG-TRANSFER TASK EXPERIMENTS

Success / Attempts Success Rate (%)

Method Mean Transfer Time (s)
9 Volunteers 15.5

Surgeon 7.9

Robot Uncalibrated, Unoptimized 6.3

Robot Calibrated, Unoptimized 6.1

Robot Calibrated, Optimized 6.0

599/632 94.8
120/120 100.0

14/79 17.7
120/120 100.0
120/120 100.0

We observe that the Calibrated, Optimized method is able to outperform the surgeon in terms of success rate and speed. The mean transfer time for the surgeon
increased (i.e., slowed down) 68 % from the unilateral task, while the mean transfer time for the Calibrated, Optimized method only increased by 15 %. The results
here, coupled with those from the parallel bilateral experiments, suggest that the robot is better able to parallelize subtasks than the human.

mean transfer time than the volunteers. This may particularly
apply for the bilateral peg transfer tasks, because the robot can
easily parallelize its transfers.

H3) The Calibrated Optimized robot trajectories will have
fewer collisions per trial than the Uncalibrated robot trajecto-
ries and the human trajectories.

H4) The Calibrated Optimized robot will have a lower
distance traveled per trial than the surgeon. The surgeon will
cause the robot to have a lower distance traveled than the
volunteers.

D. Results

We present and discuss results for the unilateral, par-
allel bilateral, and bilateral handover cases in TABLE II,
TABLE III, and TABLE 1V, respectively. Each case involves
running the three robot conditions: (1) Uncalibrated, Unop-
timized, (2) Calibrated, Unoptimized, and (3) Calibrated,
Optimized, plus the surgical resident (Surgeon) and inexpe-
rienced teleoperators (Volunteers) for 10 trials each. When

presenting the Volunteers results, we average all results from
the 9 volunteers (648 transfers per each variant). We present
aggregated trajectory statistics such as distance traveled and
average acceleration in Fig. 9 and Fig. 10.

1) Unilateral (One Arm) Peg Transfer: Using only one
arm, the surgeon has the fastest mean transfer time of 4.7 s,
with a perfect 120/120 success rate. The calibrated robot also
attains perfect 120/120 success rates, matching the surgeon’s
performance. Volunteers have a relatively high success rate of
95.9 %, but require an average of 12.3 s per transfer attempt.
The Volunteers and the Surgeon are able to recover some of the
failures to increase their success rate. We count the recovered
failures as success. The increased success rate by recovery is
16/636 = 2.5 % in Volunteers.

The fastest reported times for an autonomous surgical robot
on this task and setup with a comparable success rate is 13.6 s
per transfer [10], suggesting a substantial improvement of
262 %. Within this study, the trajectory optimization procedure
is able to reduce mean transfer time by 10 %. However, the
Calibrated, Optimized method is still slower than the Surgeon.
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Performance comparison. We analyze the performance of 9 volunteers, a surgeon with more than 150 hours of professional experience with the

surgical robot, and the automated robot, in terms of transfer success rates, tool-tip distance traveled per trial, number of collisions per trials, and completion
time per trial. For each task variant, the statistics are calculated from 54 trials by the Volunteers, 10 trials by the Surgeon, and 10 trials by the robot (Calibrated,
Optimized). The leftmost plot shows the mean success rate, with one standard deviation error bar, while the plots to the right utilize a traditional boxplot.
On average, all three succeed on the vast majority of transfers, but the robot is more reliable than all humans for the bilateral variant. While distance traveled
is comparable for the surgeon and the robot, in terms of collisions the robot is superior for all three task variants, and for completion time in the bilateral
and handover variants. Additionally, the robot exhibits the lowest variance for all performance measures. (Total completion time: 145.8+44.7 vs 56.7£6.0 vs
62.6+0.7 s for unilateral, 129.7£56.5 vs 56.7+11.2 vs 40.4%0.5 s for bilateral, and 181.8+61.9 vs 94.8£10.0 vs 72.54+1.3 s for handover) This suggests

that it also achieves superhuman consistency in its motions.

Factors that delay the automated robot include computing
registration of the block and grasping pose (0.098 s) and cal-
culation of online trajectory planning (0.103 s). After moving
6 blocks from the left-half side to the right-half side, the robot
moves out of the workspace for another RGBD capturing. This
takes more than 3 s per trial. The actual motion execution
speed of the robot without perception is slightly faster than the
surgeon. These factors are not optimized in this paper, which
suggests that there is still further room for improvement.

2) Parallel Bilateral (Two Arms) Peg Transfer: In this case,
we find that the Calibrated, Optimized method is 60 % faster
than the surgeon in mean transfer time, and is better than
the surgeon in success rate (120/120 versus the surgeon’s
115/118). This task was also studied in prior work [10], which
reports a success rate of 78.0 % and a mean transfer time
of 5.7 s. In contrast, this work improves the success rate
by over 28 % and speeds up the mean transfer time by
19.0 %. Volunteers increase the success rate using recovery
by 22/642 = 3.4 % and the surgeon by 4/118 = 3.4 %. The
Surgeon experienced 7 failures during bilateral transfers and
recovered in 3 cases. In the remaining 4 cases, the Surgeon

is not able to recover the block because the block falls out of
the workspace of the robot.

3) Bilateral Handover Peg Transfer: In the bilateral han-
dover case, we find that the Calibrated, Optimized method
has the highest success rate and the fastest mean transfer
time (6.0 s). The Calibrated, Optimized method outperforms
the surgeon by 31.7 % in mean transfer time. We attribute
the faster speed in this setting to the surgeon’s observation
that ensuring the handover step works correctly is difficult
and requires time and care. In addition, the way the robot
does the automated handover is slightly different and does
not involve a significant rotation of the wrist joints. While
the surgeon rotates the block with the first gripper into a
horizontal orientation to grasp it on the opposite side with
the second gripper, the robot maintains the vertical orientation
of the block and grasps the same side of the block with both
grippers during handover. To our knowledge, this is the first
automation study of the bilateral handover peg-transfer task.

4) Trajectory Analysis: Fig. 10 presents a comparison of
the Volunteers, Surgeon, and the robot under the Calibrated
Optimized condition. We do not show the uncalibrated robot
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Comparison of velocity, acceleration, and jerk of volunteers, surgeon, and the robot. The 9 volunteers, as they are new to the system, tended

to operate at below the capabilities of the robot, while the surgeon and the robot pushed the limits. The surgeon operated at higher velocities, with higher
accelerations and jerk than the volunteers. While the surgeon places the most demands on the joints, the robot has the fastest motion in the task-relevant

end-effector space.

because it preforms significantly worse. We observe that the
robot and the Surgeon both have near perfect success rates on
all tasks. The Surgeon is faster than the automated procedure
on the unilateral task, but is slower on average on the parallel
bilateral and bilateral handover tasks. The robot is faster than
the fastest volunteer in all trials. We define collision as the two
robot arms colliding during hand off or the robot arm/the block
hitting the peg on the sides during the task. In most cases,
collisions are recovered and do not result in failures. The robot
never has collisions, whereas both the surgeon and volunteers
have a median of 6 and 8 collisions per trial respectively
on all tasks. We also measure the distance traveled by the
end effectors during the tasks. The volunteers tip motion is
significantly longer than that of the surgeon and the robot on
all tasks. The surgeon motion is slightly shorter than the robot
on the unilateral task, roughly the same in the bilateral task
and over 12.5 % larger in median on the handover task.

Fig. 11 presents the velocity, acceleration, and jerk during
task execution for both the joints and end effector, using the
method from Todorov and Jordan [47]. We observe that the
volunteers operate at a lower velocity, acceleration, and jerk
than the surgeon and the robot. This suggests that familiarity
with system limits and capabilities helps the surgeon execute
faster motions. Interestingly, while the surgeon shows higher
velocity, acceleration, and jerk on the joints, the robot has
higher velocity, acceleration, and jerk in the end-effector. This
suggest that the robot is able to achieve higher performance
in the task-relevant end-effector, potentially reducing wear on
the joints.

VI. CONCLUSION

This paper significantly extends our prior work on automat-
ing surgical subtasks, in particular the Fundamentals of

Laparoscopic Surgery peg-transfer task and present results
for three variants: unilateral, bilateral without handovers, and
bilateral with handovers.

For the most difficult variant of peg transfer (bilateral with
handovers) over 120 trials, the surgeon achieves success rate
100.0 % with mean transfer time of 7.9 s. The robot achieves
success rate 100.0 % with mean transfer time of 6.0 s. On all
three variants of the task, the Calibrated Optimized and Cal-
ibrated Unoptimized robot achieved comparable success rates
to the surgeon and outperformed the volunteers, confirming
Hypothesis H1. In the bilateral variants of the task, the robot
was faster than the surgeon, confirming Hypothesis H2, but
it was slightly slower in the unilateral case, contradicting
Hypothesis H2. The robot achieved significantly fewer col-
lisions per transfer on average than the human operators, con-
firming Hypothesis H3. The robot traveled a greater distance
than the surgeon on average during trials, but less distance
than the volunteers, which partially contradicts Hypothesis H4,
which predicted that the robot would travel the lowest distance
overall.

We are continuing to investigate methods for increasing
transfer speeds with additional improvements to sensing,
motion planning, and pipelining.
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