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Abstract— Soft compliant jaw tips are almost universally
used with parallel-jaw robot grippers due to their ability to
increase contact area and friction between the jaws and the
object to be manipulated. However, interactions between the
compliant surfaces and rigid objects are notoriously difficult
to model. We introduce IPC-GraspSim, a novel simulator
using Incremental Potential Contact (IPC) — a deformation
model developed in 2020 for computer graphics — that models
both the dynamics and the deformation of compliant jaw
tips during grasping. IPC-GraspSim is evaluated using a set
of 2,000 physical grasps across 16 adversarial objects where
standard analytic models perform poorly. In comparison to
both analytic quasistatic contact models (soft point contact,
REACH, 6DFC) and dynamic grasp simulators (Isaac Gym
with FleX backend), results suggest that IPC-GraspSim more
accurately models real-world grasps, increasing F1 score by
9%. All data, code, videos, and supplementary material are
available at https://sites.google.com/berkeley.edu/ipcgraspsim.

I. INTRODUCTION

Recent work in grasping objects with parallel-jaw grip-
pers has revolved around learning to estimate high-quality
grasps directly from RGB or depth images using a deep
neural network [11, 18, 24, 31, 34, 37, 47]. These grasping
networks are trained on large-scale datasets of labeled grasps
generated either on physical systems [11, 18, 24, 37] or in
simulation [17, 29, 31]. Simulation-based approaches can
avoid time-intensive physical grasp attempts and have shown
strong transfer to physical systems [31], but may suffer from
noisy labels due to errors in modeling the interaction between
gripper jaws and objects.

In practice, almost all parallel-jaw robot grippers use some
form of compliant material on the jaw tips, from rubber cov-
erings [35] to custom-made silicone rubber fingertips [31], as
shown in Fig. 2. These compliant materials increase contact
area by deforming around the grasped object to resist external
tangential forces, increasing grasp robustness [40, 41, 44].
However, accurately modeling these compliant gripper jaws
in simulation is difficult, as the interaction between the com-
pliant material and the rigid object includes changing contact
area, object pose, and frictional forces. Analytic modeling of
compliant contacts, as a “soft finger” friction cone [5, 14]
or as a discretized contact area mesh [8, 45], are limited to
quasistatic analysis and thus do not incorporate dynamics. On
the other hand, dynamic simulation of compliant jaws can be
very sensitive to parameter choices: collision distances and
timestep lengths must be manually tuned for different object
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Fig. 1: Simulated (left) and physical (right) grasp outcomes:
in the first two rows, IPC-GraspSim correctly predicts grasp
success and grasp failure. In the last two, predictions are
incorrect; near-edge grasps are heavily dependent on gripper
geometry, friction, and estimated object pose.

geometries and material parameters to avoid interpenetration
or other physically unrealistic interactions between the jaws
and object.

To address the need for modeling robust, soft contacts
during dynamic parallel-jaw grasp motions, we present IPC-
GraspSim, a grasping simulator using Incremental Potential
Contact (IPC) [26]. IPC-GraspSim can accurately model
grasp outcomes produced by a physical system, as shown
in Fig. 1. IPC, developed in 2020 by the computer graphics
community to simulate complex interactions of deformables,
guarantees robust and intersection-free solutions for elas-
todynamics contact problems with friction, and supports
variable material parameters, timestep lengths, and mesh
resolutions.

https://sites.google.com/berkeley.edu/ipcgraspsim


Fig. 2: Soft parallel-jaw grippers: (left to right) silicone rubber fingers in Dex-Net 4.0 [31], rubber tape in 6-DOF
GraspNet [11], rubber fingertips in TossingBot [46]

This paper makes three contributions:
1) IPC-GraspSim: an IPC-based simulator that models

both friction and contact dynamics effects for com-
pliant gripper jaws.

2) An Isaac Gym-based parallel-jaw grasping simulator
with FleX backend that extends Eppner et al. [10] by
adding deformable gripper jaws.

3) Experiments comparing IPC-GraspSim with Isaac
Gym and 3 analytic contact models (soft point contact,
REACH, and 6DFC), that suggest IPC-GraspSim can
predict grasp robustness with F1 score of 85%, an
improvement of 11% over analytic baselines and 9%
over Isaac Gym.

II. RELATED WORK

A. Grasp Metrics and Contact Models for Soft Grippers

Analytic grasp metrics use contact force and torque con-
straints generated by contact models to measure grasp ro-
bustness. As summarized by Roa et al. [39], common metrics
describe the ability of a grasp to resist external disturbances
(force closure [3, 38]), be at equilibrium between contact
forces and external forces [21], or allow the object to resist
gravity (wrench resistance [30, 31]); these metrics can be
determined using linear or quadratic programs based on the
force and torque constraints at each contact.

Grasp contact models measure the ability of grasp contacts
between the gripper jaw and the object to resist external
forces and torques via the contact area, contact pressure and
friction applied at the contact. Models of compliant gripper
contacts typically use the quasistatic approximation. Bicchi
et al. [4] summarize analytic physics-based contact models,
including soft point contact models [6, 15, 19, 20, 43],
which exert forces in the plane tangent to the contact surface
and a torsional moment about the contact normal. Frictional
limit surface models jointly limit the tangential force and
torque about the contact normal [12, 15, 27, 49] and can
be extended to model non-planar contacts [44]. Another
approach is to approximate contact area with geometric
primitives, such as planes, spheres, or cylinders, that have
analytic solutions [5, 14]. Similarly, Danielczuk et al. [8]
and Xu et al. [45] discretize the contact area into a triangular
mesh and formulate per-triangle or per-contact limit surface
constraints based on a static friction assumption. In contrast

to these quasistatic grasp contact models and metrics, we
use a simulator that incorporates both grasp dynamics and
frictional area contacts.

B. Grasp Simulators for Soft Grippers

Grasp simulators, unlike grasp contact models, can in-
corporate dynamics which are crucial to grasping: they can
predict which jaw makes contact first, and how that affects
post-grasp displacement as the gripper and object settle into
a stable position [48]. In this paper, we focus on dynamic
simulators that model deformable materials [7, 25, 28, 33],
as it is important to model frictional contact dynamics
simultaneously with gripper compliance: deformation affects
surface area, which in turn affects object dynamics.

In particular, Isaac Gym is a GPU-enabled simulator
favored by the robotics community for its speed. NVIDIA
FleX engine integration has recently made deformables
available for robotics environments, as evidenced by recent
papers that model the SynTouch BioTac [36] and grasping of
deformable objects with rigid grippers [16]. However, many
simulators, including Isaac Gym, require manual parameter
tuning to avoid interpenetration artifacts and may be sensitive
to friction and closing force parameters [41].

In simulation, grasp success may be defined as (1) the
object can be lifted above the surface [16, 29], (2) the object
can be lifted and withstand perturbations via shaking mo-
tions [9, 10], (3) the object is removed from its environment
after grasp and move actions [47], or 4) the object’s post-
grasp pose matches a desired pose [1].

C. Simulation of Deformable Materials

Simulating deformable materials is challenging due to
their many degrees of freedom and friction between de-
formable and rigid objects. However, due to the high compu-
tational load in more accurate representations such as Finite
Element Methods (FEM), most work relies on simplified
models as provided by mass-spring systems and position-
based dynamics, which are computationally efficient but do
not have a rigorous mathematical model for contact and
friction [2]. With FEM (e.g., PyBullet’s FEM option, Isaac
Gym’s softbody implementation, and graphics implementa-
tions), Neo-Hookean materials are often used to simulate
hyperelastic materials where the stress-strain relationships
are highly nonlinear, such as silicone rubber [32].



A common model for applying loading conditions onto
the deformable bodies is the penalty-based contact, which
calculates contact force as proportional to the mesh pene-
tration depth and penalty value p, assuming nonzero inter-
penetration for all contacting bodies. High values of p can
decrease the penetration depths, but also make the problem
ill-conditioned [22]. Furthermore, any contact violation can
cause catastrophic failures [26]. A common way to handle
interpenetration is to add a boundary layer on the deformable
to “thicken” the mesh for collisions, but the layer depth must
be manually tuned for each scenario [28, 41].

D. Incremental Potential Contact (IPC)

Incremental Potential Contact (IPC) [26] is a model and
algorithm presented in 2020 based on a custom nonlin-
ear Newton-based solver that solves elastodynamics contact
problems with the smoothed barrier method. It guarantees
a collision-free state at every timestep to provide robust
solutions for all choices of material parameters, timestep
sizes, impact velocities, deformation severities, and en-
forced boundary conditions. IPC provides inversion-free and
intersection-free solutions, so that objects do not penetrate
and remain stuck to one another in future timesteps. IPC
accounts for static friction with a smoothed approximation
to eliminate an explicit Coulomb constraint, which leads to
the assumption that static and dynamic friction coefficients
are equal between each material combination. The authors
justify this decision by implementing an approximation to
static friction that can successfully model stiction.

We leverage IPC as the basis of a grasping simulator
that avoids the interpenetration issues described in Section
II-C and more accurately models grasp outcomes observed
on a physical system than existing quasistatic or dynamic
simulator approaches.

III. PROBLEM STATEMENT

We evaluate the ability of IPC-GraspSim to accurately
predict the grasp outcomes in a physical grasp dataset with
known object and gripper geometries and known grasp poses.

A. Assumptions

We make the following assumptions:
1) A singulated rigid object of known geometry and

uniform density rests on a planar surface.
2) The gripper has known geometry and two parallel jaws.
3) The silicone rubber material on the gripper jaws can

be simulated with the Neo-Hookean material model.

B. Definitions

The true state x of the grasping environment includes
geometry (including deformations), pose, mass, and frictional
properties of the object and gripper jaws. Each grasp u
is represented by the parallel gripper jaw center and the
grasp axis orientation ϕ ∈ R3. The modifiable gripper jaw
parameters include the deformable material elasticity and the
friction coefficient between the gripper jaw pads and the
grasping object. Success S(x,u) is measured with a binary

Fig. 3: Two grasp examples on a cube with IPC-GraspSim,
showing state at successive timesteps. (Top row) Successful
grasp: 1) cube and gripper initialized; 2) cube contacts right
jaw; 3) cube contacts left jaw; 4) gripper lifts cube. (Bottom
row) Failed grasp: 1) cube and gripper initialized; 2) cube
contacts right jaw; 3) cube misses left jaw; 4) grippers meet
each other.

reward function S, where S = 1 if the grasp successfully
lifts the object and S = 0 otherwise.

To model uncertainty and imprecision in robot control, we
define grasp robustness R(x,u) = E[S(x,u′)], where the
perturbed grasp pose u′ = u+ε is offset by ε sampled from
a normally-distributed pose random variable. To calculate
robustness in our experiments, we use Monte-Carlo sampling
to estimate R with the sample mean of N trials each
with a perturbed gripper pose: R = 1

N

∑N
i=1 S(x,u′i). We

emphasize the importance of using sampling with grasp
trials; although the robot may intend the same grasp on
a given object, not all trials will behave equally due to
randomness introduced by pose estimation, robot control, and
frictional forces.

C. Metrics

To quantify how closely the predicted grasp robustness
from the simulator matches the robustness measured on the
physical system, we measure the F1 score, a harmonic mean
of average precision (AP) and average recall (AR), defined
as F1 = 2 · AP ·AR

AP+AR . F1 score is a common measure of
binary classification performance for imbalanced datasets in
computer vision [42].

IV. IPC-GRASPSIM

To simulate grasps, we adapt Incremental Potential Con-
tact [26], as it guarantees intersection-free and inversion-free
solutions for all parameter choices, as described in Section II-
D. This model avoids the interpenetration artifacts faced by
many simulator models [7, 28], which include false sticking
behavior after gripper lifting (false positive) or intersecting
through the object (false negative). To avoid these large in-
terpenetration errors in other simulators, collision parameters
need to be carefully tuned.

The inputs for IPC-GraspSim are the grasping state x
and grasp u. Then the simulator performs a perturbed grasp
u′ = u + ε where ε is noise in grasp pose, with translation



noise (in meters) sampled from N (0, 0.001) and rotation
noise (in radians) from N (0, 0.003). IPC-GraspSim returns
grasp evaluation S(x,u′) upon the end of the simulation,
and we retrieve robustness R(x,u) over multiple simulation
trials with different perturbations.

A. Grasp Simulation Procedure

IPC-GraspSim models grasping with a velocity-controlled
compliant parallel-jaw gripper as follows:

1) Initialize: Initialize gripper jaws and object location as
specified by the perturbed grasp u′ and state x. Gripper jaws
are opened to their max grasp width, and unobstructed by
any object other than the target. The gripper is modeled as
two identical jaws, each composed of an extruded compliant
polygon pad attached to a rigid rectangular plate. Figures 1
and 3 show the compliant padding in light gray, and rigid
backing in dark gray.

2) Squeeze: Close gripper pads along the grasp axis with
a constant velocity. The target object will interact with the
gripper pads and the ground surface, and is free to translate
or rotate. Although physical robots complete their gripper
closing action when their maximum specified closing force
is reached, contact force information is currently unavailable
in the IPC simulator. To account for this, IPC-GraspSim
approximates closing force on the target object by checking
if A) the deformation energy described in Li et al. [26]
in both gripper tooltips Ψ1,Ψ2 have increased such that
Ψ1,Ψ2 ≥ Ψth, and B) the energy is similar in both gripper
jaws Ψ1 ≈ Ψ2. (A) assures that the closing action will not
incorrectly terminate due to deformations driven by other
external forces (e.g., gravitational), and (B) assures that equal
effort is applied by both grippers. We test various values of
Ψth on a range of grasps. Based on visual comparison with
our physical silicone gripper pads, we choose Ψth = 5×104.
Further details on Ψth, including sensitivity analysis, are in
the supplement.

3) Lift: Once the deformation energy threshold is reached,
the two gripper jaws are lifted upwards with the jaw distance
held constant until the object’s lowest point is at least 2
cm above the plane by the time the simulation finishes. A
simulated grasp is considered successful if both gripper jaws
are in contact with the object at the end of simulation, and
the object is not in contact with the plane. Examples of
successful and failed grasps are shown in Figure 3.

V. IPC-GRASPSIM: PARAMETER SENSITIVITY ANALYSIS

We analyze the sensitivity of IPC-GraspSim to the elas-
ticity E and dynamic friction µ of the gripper pad material
using a coarse grid search on the parameter space. We also
test two grippers with different geometries, as shown in
Table I (rectangular) and Table II (rounded), to study the
effect of accurately modeling the gripper geometry.

A. Test Object Set

In our experiments, we use the physical dataset from
Danielczuk et al. [8]: a set of 2,000 grasps across a set of
16 3D-printed adversarial objects on a physical ABB YuMi
robot with a compliant parallel-jaw gripper.

Young’s modulus
E (Pa)

Friction coefficient µ

0.3 0.4 0.5 0.6

1e7 0.77 0.82 0.83 0.84
1e8 0.85 0.86 0.80 0.78
1e9 0.84 0.81 0.77 0.74
1e10 0.77 0.78 0.75 0.74
1e11 0.77 0.74 0.73 0.74

TABLE I: Rectangular jaw: results of parameter grid search
over 3 training objects. (E,µ) = (108, 0.4) has the highest
F1 score of 86%.

Young’s modulus
E (Pa)

Friction coefficient µ

0.3 0.4 0.5 0.6

1e7 0.66 0.70 0.70 0.74
1e8 0.85 0.91 0.89 0.85
1e9 0.85 0.82 0.86 0.83
1e10 0.82 0.88 0.87 0.84
1e11 0.82 0.84 0.81 0.86

TABLE II: Rounded jaw: results of parameter grid search
over 3 training objects. (E,µ) = (108, 0.4) has the highest
F1 score of 91%.

We evaluate grasp outcomes on 3 objects with 1) a similar
number of successful and unsuccessful grasps and 2) varied
geometries. Then, we identify the set of parameters (Ê, µ̂)
with the highest F1 score in the training set, and use these
parameters to simulate grasps on the remaining 13 objects
in Section VI.

B. Sensitivity to Young’s Modulus and Friction

We vary the Young’s modulus of the jaw pad from 107 Pa
(rubbery material) to 1011 Pa (metal material). We linearly
vary the friction coefficient between the pad and object from
0.3 to 0.6. Note that the exact friction between the jaw pad
and object is unknown due to unknown material properties
and the unmodeled surface variations on the jaw pad, as
shown in Dex-Net’s silicone rubber fingers in Figure 2. The
millistructure design results in increased friction between the
jaw pad and the object [13]. We aim to find both the Young’s
modulus and single friction coefficient that closely models
such a structure.

For both gripper jaw models, lower Young’s modulus
values (E,µ) = (108, 0.4) have higher AP, AR, and F1 score
as compared to higher Young’s modulus values (1011, 0.4).
For rounded jaws, more compliant jaws increase AP by 13%,
AR by 2%, and F1 by 7%; for rectangular jaws, they increase
AP by 14%, AR by 11%, and F1 by 12%. Increase in µ
appears to correlate with an increase in AR, as the additional
frictional forces allow for a greater number of successful
grasps; however, AP drops as the number of false positives
increases. We hypothesize the increase in AR occurs due
to the increased contact area in compliant grippers, allowing
the grippers to deform around the contact point and distribute
contact forces across the object’s surface. However, when µ
is too high, objects no longer can slip out of the gripper jaws
and the number of false positive predictions increases.



Compliant model AP AR F1 Runtime (s)

Soft Point 0.76 0.55 0.64 0.01
REACH [8] 0.82 0.66 0.73 0.52
6DFC [45] 0.82 0.67 0.74 0.23
Isaac Gym 0.75 0.79 0.76 0.28
IPC-GraspSim 0.86 0.84 0.85 6.05

TABLE III: Average Precision (AP) and Average Recall
(AR) for each model’s grasp quality predictions for the 2000
grasps collected on the physical robot. Runtimes for analytic
methods (Soft Point, REACH, 6DFC) are provided per-grasp,
and runtimes for simulations (Isaac Gym, IPC-GraspSim) are
provided per-frame (i.e., time to compute one timestep).

C. Gripper Geometry

The compliant rounded jaws result in a 17% increase in
AP and 8% decrease in AR, leading to an overall increase
of 5% in F1 score, compared to the compliant rectangular
jaws when using the highest-performing parameters for each
geometry (E = 108, µ = 0.4). We hypothesize that the slight
precision-recall tradeoff occurs as the smaller cross-sectional
area of the rounded gripper jaw causes grasp robustness
predictions to be more conservative. However, the F1 score
ultimately increases, as the extra contact area due to the
rectangular jaws had allowed grasps to incorrectly succeed.

Based on the parameter sensitivity analysis, we use the
rounded gripper jaw model with (Ê, µ̂) = (108, 0.4) to
model the compliant gripper jaws in dynamic simulation.
We note that this optimal set of parameters closely matches
the physically estimated parameters (107 − 108 Pa, 0.46).

VI. EXPERIMENTS

A. Experiment Setup

To evaluate the precision and recall of IPC-GraspSim,
we use the 13 held-out objects from physical dataset
from Danielczuk et al. [8]. The objects in this dataset were
chosen because they span a wide range of object geometries
and grasp success rates. All objects are 3D printed such
that simulated and physical attempted grasps are identical.
For benchmark experiments, we run 5 trials for each grasp
while perturbing the grasp pose in each trial for dynamics
randomization. The trials are then averaged to calculate the
grasp robustness predicted by each grasp model.

B. Benchmark Grasp Models

In addition to IPC-GraspSim, we benchmark 4 other
models; three analytic models used in the literature (soft
point contact model, REACH [8], 6DFC [45]), and a dynamic
softbody simulation implemented in NVIDIA Isaac Gym
with Flex backend [28]. We reference the performance of
the analytic models from experimental results in Xu et al.
[45], and measure the performance of Isaac Gym and IPC-
GraspSim by simulating grasps with the rounded gripper
jaws and material properties (E = 108, µ = 0.4) determined
in Section V. Soft Point, REACH, and 6DFC are run on
an Ubuntu 16.04 machine with a 12-core 3.7 GHz i7-8700k
processor, Isaac Gym on an Ubuntu 20.04 machine with an

Intel i7-6850K processor and NVIDIA Titan X GPU, and
IPC-GraspSim on an Ubuntu 18.04 on a single core of a
Dual 20-Core Intel Xeon E5-2698 v4 2.2 GHz.

C. Results

The results in Table III suggest that IPC-GraspSim outper-
forms all baselines across the dataset of 2,000 grasps and 16
objects, increasing F1 score by 11% over the best analytic
model and 9% over Isaac Gym. We observe a 20% increase
in average recall in IPC-GraspSim compared to grasp models
that approximate compliance (Soft Point, REACH, 6DFC)
and a 5% increase in average recall compared to Isaac Gym.

We hypothesize that the increase in recall as compared to
the analytic models is due to the ability of IPC-GraspSim to
model dynamics and compliance simultaneously. Modeling
dynamics results in correct predictions for grasps that rotate
into alignment with the gripper, a common failure mode for
quasistatic models [8, 45]. In addition, modeling compliance
keeps the object closer to the gripper as it moves by 1)
conforming to the shape of the object and 2) applying normal
and frictional forces that stabilize the object. The combi-
nation of dynamics and compliance models the changing
contact area and contact pressure over the course of the
grasping motion.

In comparison to Isaac Gym, IPC-GraspSim increases
average precision by 11%, average recall by 5%, and F1
score by 9%. The performance of IPC-GraspSim highlights
the importance of intersection-free and robust modeling of
soft contacts for compliant gripper modeling. First, poorly-
resolved contacts may cause grasped objects to move unpre-
dictably (e.g., float or swing into air, as shown in Figure 4C-
D for Isaac Gym). Second, incorrect contacts introduce force
imbalance between the two compliant jaws and cause the
target object to wobble around or become lodged in the
gripper, resulting in unrealistic object behavior.

D. Failure Mode Analysis

Table IV shows results for each grasp attempt of the “vase”
(object 21 in the grasp dataset collected by Danielczuk et al.
[8], shown in Figure 1). A full breakdown of grasp attempts
and predictions for all objects can be found in the supple-
ment. For this object, we observe a high correlation between
IPC-GraspSim predictions and physical experiments. IPC-
GraspSim achieves an F1 score of 0.83 as compared to 0.76
for the best-performing among the analytic methods and 0.68
for Isaac Gym.

We observe a false positive prediction for grasp 7, where
the 3D printed plastic part of the gripper jaws bend or
cantilever away from the object under the stress from the
closing forces. The contact forces then push the vase away
from and out of the gripper. However, in simulation, the
gripper backings are perfectly rigid, and and do not account
this bending phenomenon.

We also observe a false negative prediction for grasp 2,
where the right jaw contacts the vase first and rotates the
vase out of the gripper. This phenomenon is also observed
in Figure 4A, where the simulated grasp fails as the object is



TABLE IV: Grasp robustness values predicted by IPC-GraspSim (top row) and observed from physical experiments (bottom
row) using an ABB YuMi with a compliant parallel-jaw gripper on the “vase” object shown in Fig. 1. Each cell contains the
robustness R = 1

N

∑
i∈{1..N} Si, with N = 5, and is colored to indicate its relative robustness (red: unreliable, green: robust).

We observe a very high correlation of predicted grasp robustness between the two rows, which suggests that IPC-GraspSim
can reliably predict physical grasp outcomes. Example true positive (grasp 2), true negative (grasp 0), false positive (grasp
7), and false negative (grasp 1) grasps are shown in Fig. 1.

Fig. 4: Four grasps (columns) with three simulators: (Top to bottom) IPC-GraspSim, Isaac Gym, Physical Experiments. (A)
False negative: IPC-GraspSim and Isaac Gym fail to predict that the right jaw will contact the cube. (B) True positive:
bowl correctly moves and rotates into gripper for both sims. (C) False positive: in IPC-GraspSim, rigid jaws have sufficient
contact area to grasp “pawn”. In Isaac Gym, incorrect contact forces push the object up and away from the plane. Physical
grasp fails as jaw cantilevering decreases contact area. (D) False negative: in IPC-GraspSim, left gripper jaw pushes object
out of the gripper. For Isaac Gym, the object is pushed upwards, with a similar issue as described in (C). Videos of all
simulator grasp attempts can be found on the website.

not contacted by the right gripper jaw. This missed prediction
suggests that precise gripper geometry and gripper closing
speed have an impact on grasp predictions. We additionally
hypothesize that the dynamics between the ground plane and
the object are not well-modeled in simulation.

VII. DISCUSSION

In this paper, we present IPC-GraspSim, an intersection-
free, robust grasp simulator, and evaluate its performance
on a physical grasp dataset generated with compliant
parallel-jaw grippers. Compared with analytic baselines,
IPC-GraspSim improves recall while maintaining similar
precision, which we hypothesize is a result of modeling the
compliance in a dynamic context: the contact points between
the grippers and the target object change throughout the
entire gripper closing process. IPC-GraspSim also improves
precision over Isaac Gym due to its ability to stably model
soft contacts without interpenetration. IPC is designed for
simulating contact dynamics, and thus puts speed as lower
priority. In future work, we will accelerate the simulator

by using Medial-IPC [23], which has demonstrated speed
performance improvements up to 110x times faster than
the original IPC implementation and explore the ability
of IPC-GraspSim to generalize to different jaw materials
and geometries. We will also explore the effect of training
grasp prediction neural networks using the predicted grasp
outcomes from IPC-GraspSim.
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