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Abstract— We present the “Busboy Problem”: automating
an efficient decluttering of cups, bowls, and silverware from a
planar surface. As grasping and transporting individual items
is highly inefficient, we propose policies to generate grasps for
multiple items. We introduce the metric of Objects per Trip
(OpT) carried by the robot to the collection bin to analyze
the improvement seen as a result of our policies. In physical
experiments with singulated items, we find that consolidation
and multi-object grasps resulted in an 1.8x improvement in
OpT, compared to methods without multi-object grasps. See
https://sites.google.com/berkeley.edu/busboyproblem for code
and supplemental materials.

I. INTRODUCTION

The post-meal task of clearing a dining table, commonly
referred to as “bussing,” requires moving cups, bowls, and
utensils that are dispersed across the surface into a bin or
tray to be cleaned in the kitchen. This is a common task
that occurs after any event involving food service and dish
collection, from daily household meals to casual picnics to
formal cocktail parties and dinners. Automating this tedious
and repetitive task could reduce fatigue and busy work for
the skilled waiters who typically perform it.

We define the “Busboy Problem” as the efficient transfer of
cups, bowls, and utensils (collectively called tableware) from
the table into a designated collection bin while minimizing
the time required for completion. This is an interesting
problem for automation because the tableware are of varying
shape, requiring low-level planning to execute grasps and
high-level planning to consolidate tableware for efficient
transport. Even small inaccuracies can lead to toppling or
dropping delicate and expensive tableware, so the system
must be extremely reliable.

Previous work in multi-object grasping, object manipula-
tion, and grasp candidate generation highlight the efficiency
of grasping pre-stacked objects as well as objects manually
oriented for multi-object grasps [1], [2]. Whereas these works
explore situations with objects are already positioned for
said grasps, our work investigates methods of stacking and
clustering objects into these favorable positions for multi-
object grasps.

In this paper, we present a framework and algorithms
for the Busboy Problem. We consider a scenario where
multiple items are placed on a work surface (see Fig. 2),
under an RGBD camera. We use the concept of multi-object
grasping, which enables the robot to move multiple items
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Fig. 1: The Busboy Problem. We present a combination of
the robust action primitives to declutter a workspace of cups,
bowls, and utensils.

simultaneously, thus reducing the number of pick-and-place
actions needed.

This paper makes the following contributions:

1) Formulation of the Busboy Problem.
2) Action primitives for rearranging and grasping cups,

bowls, and utensils.
3) Two algorithms that leverage consolidation and multi-

object grasps.
4) Experimental results indicating a 1.8x improvement in

OpT.

II. RELATED WORK

A. Multi Object Grasping

Prior work on multi-object grasping includes different
grasping techniques to facilitate multi-object grasps [3],
detecting the number of objects in a grasp [4], decluttering
surfaces [5], and multi-object grasping to place objects in
virtual reality [6]. Yamada et al. considered the simplified
multi-object grasping problem, where the objects are already
in a configuration where they can be grasped at once [2].
Agboh et. al. [7] showed that friction can increase picks per
hour for convex polygonal objects.

Some prior work has focused on the design of grippers for
multi-object grasping. Jiang et. al. [8] proposed a vaccum
gripper with multiple suction cups, while Nguyen et. al. [9]
proposed a soft gripper based on elastic wires for multi-
object grasping.



Fig. 2: We employ the following robust action primitives to declutter a workspace through consolidation and multli-object
grasps: single-object grasps, multi-object grasps, push-grasps, and stack-grasps.

Object stacking [1], [10], [11] has the potential to improve
the number of objects per trip. We take inspiration from these
works to include a stacking primitive.

B. Pulling

Prior work by Berretty et al. has examined the use of
inside-out pulling to orient convex polygonal parts [12].
We utilize a similar technique for circular cups and bowls.
Furthermore, a planner for ensuring convergence to the final
pose of pulling trajectories is proposed by Huang et al. [13],
where they examine the motion of planar objects undergoing
quasi-static movement.

C. Grasp Candidates

Satish et al. discuss using a synthetic data sampling distri-
bution that combines grasps sampled from the policy action
set with guiding samples from a robust grasping supervisor to
construct grasp candidates [14]. Additionally, Mahler et al.
[15] discuss the use of energy-bounded caging to evaluate
grasp candidates. They efficiently compute candidate rigid
configurations of obstacles that form energy-bounded cages
of an object, where the generated push-grasps are robust to
perturbations. Mousavian et al. describe the process of using
a variational autoencoder to generate grasps by mapping
the partial point cloud of an observed object to a diverse
set of grasps for the object [16]. Because of the relative
simplicity of our setup, we found that an analytical approach
to constructing grasp candidates is sufficient. In the case of
bowls and cups, we sample a random point uniformly on the

rim and then orient the gripper perpendicular to the tangent
of the circle at that point. In the case of utensils, we identify
the axis of the utensil, and pick the highest depth point along
that line, with the gripper perpendicular to the axis.

D. Object Manipulation in Cluttered Environments
Efficiently finding object manipulation plans in high-

dimensional environments with a large number of objects
is a challenging problem. Hasan et al. [17] addressed this
problem by identifying high-level manipulation plans in
humans, and transferring these skills to robot planners. Other
work by Tirumala et al. [18] used tactile sensing to singulate
layers of cloth from a stack. Different from these works, our
goal in the cluttered environment is to bring objects together,
or stack them, to enable multi-object grasps.

III. THE BUSBOY PROBLEM

The Busboy Problem involves the task of decluttering a
workspace containing cups, bowls, and utensils, with the
objective of minimizing both the time and number of trips
required for completion.

A. Assumptions
In the initial configuration, a planar workspace is defined

in a cartesian grid px, yq and has nc cups, nb bowls, and nu

utensils scattered across its surface. All items are assumed
to be face up, visible by camera, and within a workspace
defined by the constraints of the robot arm. These items
may be initially stacked on top of one another or resting



Fig. 3: Bowls and cups are pulled with an internal pull, and
utensils are grasped with a cage grip.

individually on the surface, and we assume that the initial
state meets the following criteria:

‚ All items are of known dimensions, and cups and bowls
are circular when viewed from top-down. Cups have
radius 4.5cm, bowls have radius 8.5cm, and utensils are
at most 17cm ˆ 1.8cm.

‚ Cups and bowls are upright, and utensils are laid flat
on the surface.

‚ Any stacks that exist are stable, such that r0 ě r1 ě

... ě rs, where r0 represents the radius of the vertically
lowest item, and rs the highest one.

‚ Initially, no two items are touching (items are singu-
lated).

B. State

We use cups, bowls, and utensils (forks and spoons) as the
tableware set - collectively called “tableware” - in this work.
Each cup and bowl has a position rx, ys, and each utensil
has a position rx, ys and orientation θ.

IV. DECLUTTERING TABLEWARE

A. Action primitives

We propose to use a combination of manipulation primi-
tives to solve the Busboy Problem. We specifically propose
to use single object grasps, multi-object grasps, pull-grasps,
and stack-grasps to efficiently clear a work surface of items
(Figure 2).

1) Grasp: We use both single and multi-object grasps in
this work. Let uG be the grasp to pickup objects — single
or multiple. We represent this action as:

uG “ rpG, θGs (1)

where pG “ rxG, yG, zGs is the center point of the grasp,
and θG is the grasp orientation.

2) Pull-Grasp: A pull-grasp action involves two steps: a
pull of one object to another, then a multi-object grasp of
both objects. We represent a pull action as:

uP “ rpS , θS ,pE , θEs (2)

where pS “ rxS , yS , zSs is the pull start point, θs is the
gripper orientation at the state point, pE “ rxE , yE , zEs

is the pull end point, and θE is the gripper orientation at
pE . For circular objects such as bowls and cups, the gripper
pulls outwards from the center of the dish using an internal
pull, and for utensils, the gripper cages the utensil around its
center point while moving it (Figure 3). Then, we denote a
pull-grasp action as:

uPG “ ruP ,uGs (3)

3) Stack-Grasp: A stack-grasp action involves two steps:
a stack of one object onto another, then a multi-object grasp
of both objects. We represent a stack action as:

uS “ ruGi
,pL, θLs (4)

where uGi
is a grasp on the lifted object, and pL “

rxL, yL, zLs is the placement point on the stationary object,
and θL is the gripper orientation at pL. Then, we denote a
stack-grasp action as:

uSG “ ruS ,uGs (5)

B. Determining allowable actions
1) Grasp: A single-object grasp is always allowable. We

can safely assume this since any dish or stack of items
is already top-down graspable. When no other actions are
allowed, the single-object grasp action is used as a default
to clear the workspace.

A multi-object grasp is allowable when the grasp heights
of both items are similar (within an adjustable threshold
value) and if the lateral distance between the grasp points
of both items is less than the width of the gripper. If the
grasp heights of the items are significantly different, the
gripper will have to either collide with the taller dish while
attempting to grasp the shorter dish or grasp only the taller
dish to avoid the collision, and either case results in a failure
of grasping multiple items at once. Similarly, if the items are
separated by more than the maximum inside width of the
grippers, an attempt to grasp both at the same time will fail.

2) Pull: A pull of two items is allowable if a multi-object
grasp can be executed on those items and if no other objects
lie between the two items on the workspace. We disallow
pull actions of items for which a multi-object grasp cannot
be executed, since the pull becomes a wasted action. We
also disallow pull actions of items with other objects between
them to ensure that the intermediate objects are not displaced
in a non-deterministic manner.

3) Stack: A stack of dish da with radius ra onto dish db
with radius rb is allowable if ra ď rb. This means that a cup
can be stacked onto a bowl, but not vice versa, and that a
utensil can be stacked onto any other dish, including another
utensil. This is to ensure that the stack stability assumption
present at the initial state remains valid after each action.



Fig. 4: Uncertainty in a cup or bowl’s location decreases
once the arm has interacted with the dish. The position of the
dish relative to the gripper’s location is known with greater
certainty after the action.

C. Robustness of action primitives

We present three primitives to robustly execute the above
actions. This design makes the primitives more robust.

1) Grasp: When executing a grasp at location x, y, z, the
robot will open its grippers centered around x, y, and then
move down to the appropriate height, as measured by the
depth sensor, before closing the gripper to grasp the object.
The affordances granted by max gripper opening, gripper
height, and gripper width mean that an off-center grasp point
x, y, z will still successfully complete the single-object or
multi-object grasp of the object (Figure 4).

2) Pull: For cups and bowls, the gripper pulls outwards
from the center of the dish, contacting the inner surface of
the dish (Figure 3). This action is successful as both rb and
rc are larger than the width of the gripper when closed. If the
gripper is anywhere within the opening of the object, it will
be able to move the target object to a specified location. For
utensils, the gripper cages the utensil around its center point
while moving it, preventing unwanted rotation and moving
the utensil to its specified location.

3) Stack: For bowls and cups, the top lip radius is larger
than the radius of the base, giving the sides a taper. Because
a dish da is only stacked onto another dish db of equal or
larger size, the base radius of da is guaranteed to be smaller
than the top radius of db, allowing the tapered sides of the
items to funnel da into place even if there is slight error in
the placement of the dish. Placing a utensil onto a bowl
is extremely robust to error because of the relative radii
of the items, and placing a utensil onto another utensil is
robust due to the curvature of the utensils themselves which

slide a misplaced utensil into place, making them naturally
conducive to stacking.
D. Policies

1) Pull Policy: The pull policy combines Pull-Grasp and
Grasp actions. From the initial scene, it checks if any multi-
object grasps can be executed right away, and executes those
first. Then, it runs the Pull-Grasp action for all remaining
items, pulling together items that don’t cause collisions
and executing multi-object grasps to clear them from the
workspace. If any items remain after all possible multi-object
grasps are executed, those items are cleared with single-
object Grasp actions. After each action, a new image of the
workspace is taken and the state representation is updated
to reflect the new state of the workspace, including any
tableware that has been moved or left behind by the previous
action. This policy is formalized in Algorithm 1.

2) Stack Policy: The stack policy combines Stack-Grasp
and Grasp actions. It repeatedly executes the Stack-Grasp
action to clear the workspace, and if there are any remaining
items they are cleared with single-object Grasp actions. It
prioritizes stacking utensils onto bowls and transporting them
to the bin, and then tries to stack the remaining dishes.
Stacking utensils first is an efficient way to improve the
number of OpT for this policy. The policy is formalized in
Algorithm 2.

After utensils are cleared, the stacks created by this policy
are limited to be a combination of at most 2 existing stacks
(i.e. once a Stack action is executed, the next action is
necessarily a Grasp on the resulting stack, not another Stack
action onto that stack). This is because when 4 or more bowls
or cups are stacked, the height difference between the lip
of the top dish and the lip of the bottom dish exceeds the
height of the gripper jaws, causing many attempted grasps
to fail. By limiting stacks to at most 2 existing stacks, we
significantly reduce the chances of creating a stack with more
than 3 dishes.

Algorithm 1 Pull Policy
Input: D Ð rd1, d2, ...dns - initial distribution of n items to
be cleared.
Output: Executes an action sequence at each iteration.
while D ‰ H do

if MultiObjGraspPossible(di, dj) @i, j P lenpDq then
Grasp(di, dj);
D Ð UpdateStateFromImage();
continue;

if PullGraspPossible(di, dj) @i, j P lenpDq then
Pull(di, dj);
Grasp(di, dj);
D Ð UpdateStateFromImage();
continue;

Grasp(di) @i P lenpDq;
DÐ UpdateStateFromImage();

V. EXPERIMENTS AND RESULTS

We evaluate through physical experiments the robustness
of the pulling action primitive and then evaluate the pull and



Algorithm 2 Stack Policy
Input: D Ð rd1, d2, ...dns - initial distribution of n items to
be cleared.
Output: Executes an action sequence at each iteration.
while D ‰ H do

if UtensilsAndBowlsRemaining() then
Stack(u, b) @u P utensils;
Grasppbq;
DÐ UpdateStateFromImage();
continue;

if StackGraspPossible(di, dj) @i, j P lenpDq then
Stack(di, dj);
Grasp(dj);
D Ð UpdateStateFromImage();
continue;

Grasp(di) @i P lenpDq;
DÐ UpdateStateFromImage();

stack policies on a real-world table clearing task.

A. Experimental Setup

We use a UR5 robot arm with a Robotiq 2F-85 gripper and
Intel RealSense 455D RGBD camera mounted 83cm above
the workspace. The workspace is a flat 78cm x 61cm surface
with 4 cups, 4 bowls, and 4 utensils, nb “ nc “ nu “ 4. In
our experimental setup, we calculated a max gripper opening
of w “ 8.5cm, gripper height of h “ 4.5cm, bowl radius
rb “ 8.5cm, cup radius rc “ 4.5cm and utensil width ru “

1.8cm.
We identify and locate tableware on the workspace with a

vision pipeline. Since the surface of the workspace is white,
we use darker colored tableware to be easily visible. To
locate cups and bowls, we first use edge detection, contour
forming, and HoughCircles to identify circular shapes on the
workspace, then filter these circles based on the known image
radius of cups and bowls. We cluster these circles by their
centers and remove circles that overlap beyond a specified
threshold, allowing an unambiguous detection of cups and
bowls. To locate utensils, we use edge detection and contour
forming, and then filter out the contours that are too “square”,
as determined by the aspect ratio of the identified contour.
We draw an imaginary line through the lengthwise center of
bounding rectangle of the contour, and sample depth values
along that line; we use the highest depth point as the grasp
point of the utensil to allow the gripper maximum clearance
with the surface.

We define three tiers to evaluate the performance of our
algorithm on scenes of increasing complexity.

‚ Tier 0: scenes contain 6 items, either all cups, all bowls,
or all utensils, with no stacks in the initial state.

‚ Tier 1: scenes contain 4 items each of cups, bowls, and
utensils, and have no stacks in the initial state.

‚ Tier 2: scenes contain 4 items each of cups, bowls, and
utensils, but we allow stacks of at most 3 objects in the
initial state.

For Tier 2, we limit initial stacks to at most 3 objects because
of the dimensions of the gripper, as mentioned in Section
IV-D.2. The number of objects in a stack, and not the actual
dimensions of individual dishes, is the main limiting factor
for the grasp, because we grasp dishes from the rim. The
dishes could actually be much larger and still be graspable as
long as the walls are thin enough to allow the gripper to slide
over them, and the weight of the dish does not exceed the
payload limitations of the gripper itself. We limit ourselves
to a small set of known kitchenware objects for consistency
in our experiments.

We evaluate the performance of the pull and stack policies
against a baseline single-item policy, referred to as “Ran-
dom” in Table I. This policy picks a dish at random, and if
the dish is a cup or bowl, it uniformly samples a point on the
rim and grasps the dish at that point. If the dish is a utensil,
it identifies the grasp point of the utensil as described above
and grasps the utensil at that point. This policy is stack-
agnostic, so even in Tier 2 when there are stacks present in
the initial state, it treats each item in the stack as its own
object, and clears the stack by transporting one item at a
time.
B. Scene Generation

In order to evaluate our policies, we generate multiple
scenes at each tier, and every policy is run once on each
scene. To generate each scene, we use the dimensions of the
workspace (78cm ˆ 61cm), and rb, rc, ru for the dimensions
of the objects. We randomly sample x, y locations within the
scene for each object. If an object intersects with another
object, we create a stack of the two objects if the maximum
number of intersections has not been exceeded, and resample
a position for the object if it has. Tiers 0 and 1 allow no such
intersections, whereas Tier 2 allows 4 intersections. For each
trial we manually reset the scene to maintain consistency.

C. Evaluation

We evaluated on 9 scenes at Tier 0 (3 scenes per type of
dish), 3 scenes at Tier 1, and 3 scenes at Tier 2. A trial is one
execution of one policy on one scene, so we have a total of
p9`3`3q ˚3 “ 45 trials. For each trial, we record the time
in seconds to clear the table, the OpT, and the number of
failures. A failure occurs when the robot is unable to move
all items to the collection bin, either because of a perception
failure that leaves items behind on the workspace or a policy
failure that drops a dish off the workspace. We report our
results in Table I.

To evaluate the performance of our policies in more
realistic scenario, we present the theoretical improvement in
execution time when the bin is placed further away from
the workspace, as might be seen in a home or professional
kitchen. Given the physical limitation of the UR5 arm length,
we simulated the lengthening distance by adding time delays
of 3 and 5 seconds in both directions of motion (to and from
the collection bin). We find that moving the bin further away
causes the stack and pull policies to perform significantly
better than the baseline policy because motions to and from
the bin are penalized, making policies with fewer total



Tier Policy Time (sec) Objects per Trip Failures Time Ratio OpT Ratio

Tier 0 Cups Random 78.2 0.8 0 - -
Stack 58.5 2.0 0 1.4 2.6

Pull 48.8 1.6 2 1.6 2.1

Tier 0 Bowls Random 63.3 1.0 0 - -
Stack 60.2 2.0 0 1.1 2.0

Pull 41.3 1.8 0 1.5 1.8

Tier 0 Utensils Random 64.1 1.0 0 - -
Stack 64.3 1.8 0 1.0 1.8

Pull 55.3 1.8 1 1.2 1.8

Tier 1 Random 121.3 1.0 1 - -
Stack 111.3 2.0 2 1.1 2.0

Pull 102.1 1.6 3 1.2 1.6

Tier 2 Random 93.5 1.4 0 - -
Stack 88.2 2.6 2 1.1 1.8

Pull 84.2 2.3 3 1.1 1.6

TABLE I: Physical Experiments We present the total time and number of trips to clear a table for each policy. We found
that compared to the baseline policy, the stack policy makes at least a 1.8x improvement in the number of objects grasped
per trip (OpT) and the pull policy makes at least a 1.6x improvement.

actions perform better. We report these results in Table III
in the appendix of the project website.

VI. DISCUSSION

Results show that using consolidation and multi-object
grasps allows clearing the workspace efficiently, with the
pull policy transporting at least 1.6x as many objects per trip,
and the stack policy at least 1.8x. A discussion of resulting
execution time improvement is in the appendix of the project
website.

VII. LIMITATIONS AND FUTURE WORK

An overhead RGBD camera gives only a clear top view.
This affects state estimation and can lead to failures. We
assume circular cups and bowls. This makes it easy to
compute grasps. For more general dishes, advanced grasp
generation methods will be needed. In future work, we will
loosen the assumption of starting with singulated objects.
We also hope to combine the pull and stack policies into a
higher-level policy that can efficiently clear the workspace.
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