
FogROS2-SGC: A ROS2 Cloud Robotics Platform
for Secure Global Connectivity

Kaiyuan Chen1, Ryan Hoque1, Karthik Dharmarajan1, Edith LLontop1, Simeon Adebola1,
Jeffrey Ichnowski2, John Kubiatowicz1, and Ken Goldberg1,3

Abstract— The Robot Operating System (ROS2) is the most
widely used software platform for building robotics applications.
FogROS2 extends ROS2 to allow robots to access cloud com-
puting on demand. We introduce FogROS2-SGC, an extension
of FogROS2 that can effectively connect robot systems across
different physical locations, networks, and Data Distribution
Services (DDS). With globally unique and location-independent
identifiers, FogROS2-SGC can securely and efficiently route data
between robotics components around the globe. FogROS2-SGC
is agnostic to the ROS2 distribution and configuration, is com-
patible with non-ROS2 software, and seamlessly extends existing
ROS2 applications without any code modification. We evaluate
FogROS2-SGC with 4 robots and compute nodes that are 3600
km apart. Experiments suggest FogROS2-SGC is 19× faster
than rosbridge (a ROS2 package with comparable features, but
lacking security). Videos and code are available on the website
https://sites.google.com/view/fogros2-sgc.

I . I N T R O D U C T I O N

As robots are increasingly deployed worldwide, they
require mechanisms to efficiently, reliably, and securely
communicate with other robots, sensors, computers, and
the cloud. The applications are broad, from mobile robots
with changing IP addresses due to traveling through different
networks, to a fleet of globally distributed robots learning
collaboratively. Cloud and fog robotics [1] empower robots
and automation systems to harness off-board resources
in cloud-based computers. In prior work, we introduced
FogROS2 [2], now an official part of the ROS2 ecosystem [3],
to enable robots to execute modern compute and memory-
intensive algorithms using on-demand hardware resources on
the edge and cloud. However, ROS2 and FogROS2 assume
all robots are locally connected and each robot has full
access and control of other robots. Robots connecting to the
cloud, a nearby computer on a different network, or a robot
halfway around the world introduce additional challenges: (1)
Robots that are accessible to other systems on the public
internet may be vulnerable to unauthorized connections
and data breaches. (2) The heterogeneity of interconnected
devices, communication protocols, and configurations causes
incompatibilities that hinder integration and operation. (3) The
changing network topology of mobile robots and Unmanned
Aerial Vehicles (UAVs) challenges their ability to stay
connected. To illustrate some of these challenges (Fig. 1),
consider:

1Department of Electrical Engineering and Computer Science
2Carnegie Mellon University, Pittsburgh, PA, USA
3Department of Industrial Engineering and Operations Research
1,3University of California, Berkeley, CA, USA
kych@berkeley.edu

Fig. 1: FogROS2-SGC enables Secure Global Connectivity for robots,
allowing robots to communicate with other robots, computers, and the
cloud through a standard ROS2 interface. With FogROS2-SGC, (A) drones
navigating large construction sites can seamlessly communicate, even when
their IP addresses are constantly changing due to switching Wi-Fi and cellular
networks; (B) shipping and stocking robots from different corporations
can securely share only the required topics necessary to facilitate the
transfer of goods at a warehouse; and (C) globally distributed robots can
participate in fleet learning. In experiments, we demonstrate FogROS2-SGC
on Fleet-DAgger [4], a fleet learning algorithm, with 4 robot arms operating
simultaneously in different locations.

(A) Security and inspection drones: Drones navigate a
construction site and stream data to a central station that
updates a dynamically-changing SLAM map [5]. As drones
fly through different cellular and Wi-Fi networks, their IP
addresses change, but they should remain securely connected.

(B) Coordinating heterogeneous mobile robots in a ware-
house: Robots belonging to different companies (e.g.,
shipping vs. warehouse) and of different makes and models
hand off items between container and warehouse. Each robot
has unique software packages and versions (e.g., operating
systems and network protocols) and must communicate, but
only a few selected topics are necessary for the handoff.

(C) Distributed fleet learning: Robot arms at different
locations pool their data and collectively update a shared
control policy. Robots unable to make progress can fall back
on remote human teleoperators, using algorithms such as
Fleet-DAgger [4].

To address these challenges, we present FogROS2-SGC
(Secure Global Connectivity), an extension of FogROS2 that
securely and reliably connects robots across different soft-

ware components, network protocols, and physical locations.
FogROS2-SGC enables disjoint ROS2 networks to connect
to ROS2 topic interfaces named with globally-unique and
location-independent identifiers. The robots using FogROS2-
SGC can roam freely while staying connected because the
identifiers are constant. They are 256-bit strings that are secure
and anonymous to unauthorized attackers by construction —a
brute-force attack would have to find a match among 1077

possibilities (a value close to the number of protons in the
observable universe1). FogROS2-SGC adopts a security-first
routing design, where only authenticated parties can connect
to the robot and establish secure communication. In contrast
to prior work such as SROS2 [7] and FogROS2 [2], FogROS2-
SGC does not require merging distributed ROS2 networks,
allowing robots to keep their ROS2 networks private and
expose public topics only if explicitly configured. Providing
fine-grain isolation and access control reduces the attack
surface and enhances scalability.

FogROS2-SGC seamlessly integrates with ROS2 appli-
cations without code modifications via an SGC proxy.
Its implementation and security policy configuration are
agnostic to ROS2 distributions and their network transport
middleware vendors. FogROS2-SGC is also compatible with
non-ROS2 programs that interact with ROS2 components
and can provide secure global connectivity to non-cloud
servers and computers. Furthermore, since memory copy
and synchronization operations are expensive for memory-
constrained robots, the implementation of FogROS2-SGC
processes can route data without performing unnecessary
copies (also known as “zero copy”).

Experiments suggest that FogROS2-SGC reduces the
network latency of a cloud-based grasp planning application
by 9.42× compared to unsecured rosduct [8]-rosbridge [9].
We also deploy FogROS2-SGC to simultaneously control
a fleet of 4 robot arms in different physical locations with
compute off-loaded to a server 3600 km away.

This paper makes the following contributions:
(1) FogROS2-SGC, an extension of FogROS2 that
connects disjoint ROS2 networks by assigning public
ROS2 topics with globally-unique and location-independent
identifiers. (2) Method for secure and efficient routing
with FogROS2-SGC. (3) A Rust implementation of
FogROS2-SGC that uses zero-copy message processing and
asynchronous network operations for robots with memory
and compute constraints. (4) Evaluation of FogROS2-SGC
on cloud robotics applications (vSLAM, grasp planning,
motion planning, simultaneous fleet control) demonstrating
up to 9.42× latency reduction and enhanced usability.

1The Eddington Number [6] (NEdd) is currently estimated to be 1080.
2For example, both the routing service in rti connext and discovery

server in FastDDS/SROS2 support global connectivity but require manually
modifying routing rules or setting up a point-to-point VPN when a new
node joins [10]. Rosbridge and FogROS2 support only unidirectional global
and resilient connectivity (marked with *), meaning that one side of the
communication must have a fixed IP. In contrast, the identifier-based routing
of FogROS2-SGC allows either side to have a dynamic IP address.

FogROS2-SGC

SROS2/
Cyclone
SROS2/

FastDDS

rti_connext

Rosbridge

Zenoh

FogROS2

(c) security

(e) isolation

(f) global

connectivity

(g) resilient

connectivity

(h) agnostic to

DDS vendor

(i) non-ROS

compatibility

✗ Not supported — Not trivial ✓ Supported

✗

✓
✓

✓
✓
✓

✓

(j) efficient

message

processing

—

✓ ✗

✓ ✗

✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓
✓

✓ ✓
✗

✗

✗ ✗ ✗

✗

— ✗ ✗ ✗

✗ ✗ ✗

✗ ✗

—

— — —
—

— —
—

✗ * ✗ *

*

Fig. 2: Comparison of FogROS2-SGC with other distributed ROS2
systems. In this table, we compare the feature support of different distributed
ROS2 systems with the features in Section III. Some features can be supported
but require non-trivial effort beyond changing the configuration. 2

I I . R E L AT E D W O R K

James Kaufner introduced the term ’Cloud Robotics’ in
2010 [1]. Cloud and fog computing have been applied
to robotic tasks such as grasp planning (Tian et al. [11],
Kehoe et al. [12], and Li et al. [13]), parallelized Monte-
Carlo grasp perturbation sampling (Kehoe et al. [14], [15],
[16]), and motion planning (Lam et al. [17]). Chen et
al. [18] and Ichnowski et al. [2]. propose frameworks for
offloading computation to resources on the edge or cloud,
while Ichnowski et al. [19] and Anand et al. [20] present
systems that leverage serverless computing [21]. Modern
computing paradigms have enabled new applications such
as multi-robot interactive fleet learning (Swamy et al. [22],
Hoque et al. [4]) and remote sharing of robot systems
(Tanwani et al. [23], Bauer et al. [24]).

Remote interactions between robots and the cloud raise
security, compatibility, and connectivity challenges for robots.
Virtual Private Networks (VPNs) are the most common
approach for establishing secure communication between
robots and the cloud for both ROS and ROS2 (e.g., Lim
et al. [25]). Since establishing a VPN link between a robot
and the cloud is a complex process [26], FogROS [18] and
FogROS2 [2] automate the certificate generation and VPN
setup. SROS2 [7] is an alternative approach to securing ROS2
communication that enforces access control of ROS2 topics.
However, it requires DDS-dependent discovery mechanisms
to ensure connectivity. Discovery mechanisms for DDS (such
as the discovery server for FastDDS [27] and the RTI routing
service for RTI Connext [28]) are vendor-specific and not
compatible with other DDS implementations. Zenoh for
ROS2 [29] is integrated with CycloneDDS to enhance peer-
to-peer connectivity, but it is not compatible with other
DDS implementations. ROS Remote [30] by Pereira et al.
and MSA [31] by Xu et al. propose alternative protocols
to unify cloud-robot communication. However, alternative
protocols require modifications to ROS applications and are
not compatible with ROS2. Finally, rosbridge [9] proposed
by Crick et al. is widely adopted by both ROS1 and ROS2
to allow non-ROS software to interact with ROS2 nodes. It

can also be used to bridge two non-compatible and remote
ROS applications when used in conjunction with rosduct [8].
However, rosduct and rosbridge have significant message
latency when the message size is large (e.g., images). A
summary of how FogROS2-SGC differs from related work
can be found in Fig. 2.

I I I . T E N F O G RO S 2 - S G C F E AT U R E S

FogROS2-SGC extends FogROS2 to address the Secure
Global Connectivity (SGC) problem of securely and reliably
connecting globally distributed robots, sensors, computers,
and the cloud. We enumerate 10 new features to differentiate
from related libraries and alternative approaches.

a) Globally identifiable addresses: FogROS2-SGC en-
ables a scalable number of ROS2 networks to publish a subset
of ROS2 topics to other disjoint ROS2 networks around the
globe. In scenario (C) from Fig. 1, the robot arms are located
at different geographic locations with different local ROS2
networks. FogROS2-SGC allows remote human teleoperators
to operate the robot arms as if the arms are connected to
local networks. FogROS2-SGC also allows disjoint robots to
publish to the same local ROS2 topics with globally unique
and identifiable addresses.

b) Transparency to ROS2 applications: ROS2 modu-
larizes a robotics application into nodes, and connects the
nodes into a graph. Nodes communicate with each other
through a publish-subscribe (pub/sub) system, where publisher
nodes send messages to topics, and nodes subscribed to these
topics receive these messages. FogROS2-SGC adheres to
the abstractions and interfaces of ROS2. ROS2 applications
interact with remote nodes as if they are nodes on the same
robot or subnetwork.

c) Communication security: FogROS2-SGC guarantees
that no unauthorized attacker can eavesdrop or tamper
with ROS2 messages. Authorization is identified by user-
configured cryptographic keys. In all three scenarios from
Section I, the robots communicate across wide-area networks
with untrusted infrastructure. FogROS2-SGC prevents at-
tackers from accessing any content in ROS2 messages and
differentiates authentic robots from spoofing attackers.

d) Global anonymity: Authorized participants can deter-
ministically derive global identifiable addresses with ROS2
topic information and cryptographic secrets. Attackers cannot
reverse any information used to recover addresses or topics.
FogROS2-SGC prevent attackers that know part of the ROS2
topic information from deducing the global address. For
example, the attackers who know the topic name and type
information cannot guess the address, because they lack the
author information and security credentials of the ROS2 node.

e) ROS2 network isolation and topic-level access con-
trol: FogROS2-SGC connects robots without merging dis-
tributed ROS2 networks. Every robot can have an arbitrary
number of private ROS2 topics and only public interfaces are
shared with other authorized ROS2 networks. Other ROS2
nodes interact with these public interfaces just as they interact
with a local ROS2 topic. This protects the privacy of the
robot and prevents unintended messages from being shared

with other disjoint networks of the system. For example,
in scenario (B), a delivering robot from one company and
receiving robot from another may have some proprietary
topics that are kept private from each other. FogROS2-SGC
isolates the topics private to each robot.

f) Global connectivity: Some robots are connected to
subnetworks that are not directly accessible from the outside.
For example, robots in scenario (C) are in local area networks
behind Network Address Translation (NAT). NAT allows
multiple robots to share the same IP, but the translation is
dynamic and ROS2 nodes outside cannot directly access the
robots. FogROS2-SGC can connect ROS2 nodes that are
behind firewalls and NAT.

g) Seamless and resilient connectivity to network dy-
namism: FogROS2-SGC adapts to the dynamic network
behaviors of drones and mobile robots. FogROS2-SGC does
not rely on static IP addresses to identify the robots because
such addresses are usually bound to a physical location.
Adding or reconnecting to robots should not restart the ROS2
node entirely, as this causes service interruptions and failures.

h) DDS-agnostic compatibility: ROS2 adopts the Data
Distribution Service (DDS) as its underlying network transport
middleware to marshal, unmarshal, and exchange messages.
ROS2 supports different DDS implementations, such as
CycloneDDS [32], FastDDS [27], and RTI Connext [28].
However, a warehouse in scenario (B) may have robots
running different versions of ROS2 and DDS. FogROS2-
SGC is DDS-agnostic by leveraging ROS2 abstractions and
not using any DDS-specific interfaces.

i) Compatibility with non-ROS2 software: FogROS2-
SGC allows non-ROS2 software to interact with ROS2
nodes. This principle is inspired by rosbridge [9]. Besides
common transport protocols, while ROS2 officially supports
C++ and Python, FogROS2-SGC allows programs to use
gRPC [33], the most widely used Remote Procedure Call
(RPC) framework that can run in heterogeneous environments
and popular programming languages (including Go, Java,
Javascript, PHP, and Rust) to control the robots.

j) Efficient message processing and routing: ROS2
messages are buffered in memory to be processed by
FogROS2-SGC. Because robots often have memory and
compute resource constraints, FogROS2-SGC is memory-
efficient by reducing unnecessary message copying and
memory synchronization. Since FogROS2-SGC requires
frequent exchange of packets to and from the network,
network operations (such as send and recv) are not on the
critical path of message processing.

I V. F O G RO S 2 - S G C D E S I G N

See Fig. 3 for the system architecture. FogROS2-SGC
sends messages via a globally unique identifier (Sec. IV-A).
This identifier is unique to a robot and topic pair; thus, it
can be used for sending and receiving messages regardless of
robot location or network address (Sec. IV-B). The identifier
is secure and communication is encrypted, meaning only
authorized robots and nodes can access messages from its
referenced topic (Sec. IV-C). To implement routing based on

FogROS2
Robot

Camera
Node

SGC
Routing (IV.B)

SGC Proxy (IV.D)

SGC
Routers

(IV.E)

SGC
Router
(IV.E)

Identity
Manager

(IV.A)
SGC Proxy (IV.D)

SGC
Router
(IV.E)

Identity
Manager

(IV.A)

Security (IV.C)

Fleet
Learning

Node

SGC Network
ROS2 Nodes

ROS2 Network

 /image Global
Identifier
(IV. A):
[75e…0fc] /image

FogROS2 Cloud
SGC Components
SGC Routers

Fig. 3: System overview of FogROS2-SGC’s architecture showing a
connection between a robot camera stream (on the ROS2 topic /image)
and the cloud. The FogROS2-SGC assigns the ROS2 topic /image an
anonymous, globally-unique and location-independent 256-bit identifier
[75e...0fc] (truncated for brevity). The messages between identifiers
are securely routed with the SGC router.

the identifier, FogROS2-SGC consists of two main software
components—(1) a router (Sec. IV-B and IV-C), responsible
for securely routing messages between other routers and
nodes, and (2) a proxy (Sec IV-D), that converts between
ROS2 messages and the secure routers. As robots can be
compute and memory-constrained, FogROS2-SGC provides
a compute and memory-efficient implementation (Sec. IV-E).

A. Global Addressability

Maintaining a globally unique identifier enables the identi-
fication of a specific robotic component across subnetworks.
FogROS2-SGC uses ROS2 topics as the minimal granularity
for the global identifier because a topic is an interface to
ROS2 nodes, and a ROS2 node can publish or subscribe to
multiple ROS2 topics at the same time. For example, a ROS2
vSLAM node in openVSLAM [5] has four ROS2 topics for
camera information, video streaming, output localization, and
mapping information. These ROS2 topics expose standardized
interfaces with fixed message types. Users can limit the
exposure of the ROS2 network by allowing only parts of
the interface to be public. Partitioning public and private
interfaces also enhances privacy and isolation, prevents
unintended message exchanges, and reduces communication
overhead.

The identifier is designed to be unique, deterministic,
and location-independent. To avoid name collisions, every
identifier has 256 binary bits, leading to 2256 possible
identifiers. Instead of letting users decide, all identifiers are
cryptographically derived from the metadata of the ROS2
topics by an identifier manager in the SGC proxy. The SGC
proxy collects metadata such as the ROS2 node’s name,
author, maintainer, interface, and description from standard
ROS2 interface and user configuration file. The metadata also
has a unique string in case the user needs to deploy the same
topic at different locations. Every topic has an associated
security certificate in X.509 [34] to verify the identity of
those who want to publish or subscribe to the network. All
the metadata is serialized and converted into a 256-bit string
using SHA-256 [35], a widely used cryptographic hashing
algorithm that maps arbitrary lengths of text to almost-unique
256-bit binary strings.

Security Analysis: The hashed string is suitable for use as

the globally unique identifier for the following reasons: (1)
Deterministic: The hash is deterministic so that every party
holding the same metadata can derive the same hash value and
thus the same global identifier. (2) One-way: SHA-256 is a
one-way function, so the attacker cannot deduce or reverse the
original metadata from the 256-bit identifier. (3) Avalanche
effect: A small change to the original metadata leads to a new
hash value that appears unrelated to the original hash value.
(4) Large namespace: There are 2256 possible identifiers
and it has been proved to be computationally intractable to
find two messages with the same hash. Verification of these
guarantees can be found in Appel [36].

B. Location-Independent Routing

Although having all identifiers in the same globally-
flat namespace protects the privacy of the node’s identity
information and physical location, the identifiers do not carry
any routing information. Flipping a bit in the identifier may
lead to a drastic change in its physical location, or from
existent to nonexistent. Therefore, securely routing messages
between flat identifiers is a challenging problem. To solve
this problem, FogROS2-SGC consolidates and extends the
Global Data Plane (GDP) [37], a peer-to-peer network that
routes messages between location-independent identifiers. The
routers are set up by the user and peer-wise connected into
a routing graph; robots do not need to know other robots’
addresses as long as there is a connected routing path. The
routers can be any machine that has network and general
compute capabilities, such as an edge computer or a cloud
server. Every router stores the mapping between the identifiers
and the corresponding routing information of the identifiers
in the Routing Information Base (RIB).

A joining robot or router broadcasts an advertisement
packet that announces the existence of the identifier and
the routing information to the robot. The packet format is
aligned with other FogROS2-SGC packets in Fig. 5. Other
routers store the routing information in RIB and broadcast
the advertisement packet. Routing is achieved by looking up
the destination routing information in the RIB and forwarding
to that destination.

Fig. 4 illustrates a step-by-step example of a publishing
and subscribing /camera topic with FogROS2-SGC. The
figure assumes that all the connections between routers are
established. This can be achieved through configuration or
dynamic node discovery [38]. The steps are: (1) The robot
SGC proxy P1 generates an advertisement message for the
ROS2 topic /camera and sends it to Router 1. (2) After
verifying the advertisement message, Router 1 records the
advertisement in its RIB and forwards the topic information
to Router 2. There can be multiple routers between Router
1 and Router 2. (3) The cloud SGC proxy P2 requests to
subscribe to /camera, and the subscribe request is sent to
Router 2. (4) The subscribe request from Router 2 is routed
to Router 1 by checking the source information at Router
2’s RIB. After verifying the request, Router 1’s RIB records
P2 as the data sink. (5) The subscribe request from Router
1 is routed to the robot by checking the source information

Router 1

Router 2

Identifier: [75e…0fc]
ROS2 Publisher: /camera

Identifier: [75e…0fc]
ROS2 Subscriber: /camera

RIB (Router 1)
75e…0fc [P1, source]

[R2, sink]

RIB (Router 2)
75e…0fc [R1, source]

[P2, sink]

Robot SCG Proxy (P1)
75e…0fc [R1, sink]

SCG Proxy (P2)
75e…0fc [R2, source]

Cloud
①

②
③

④⑤

⑥

Data
Identifier
Advertisement
Identifier
Subscribe Request

Fig. 4: An illustration of how a routing connection is established between
robot and cloud. The steps are further described in Section IV-B. (1,2)
Advertisement generation and publish. (3,4,5) Subscribe request. (6) Data
routing.

Timestamp

Encrypted_Payload

Hash

Signature

SHA-256 Hash

RSASSA-PSS

AES Encryption

Topic Identifier

Sender Identifier

Packet Length

Certificate

ROS2 Topic Type

ROS2 Topic Name

SHA-256 Hash
(Anonymity)

(Confidentiality)

(Integrity)

(Authenticity)

ROS2
Message

[data: hello FogROS]

/chatter

/std/msg/String

Packet Action
GDPAction::Forward

Robot running ROS2 FogROS2-SGC
Proxy

FogROS2-SGC Packet

Fig. 5: An illustration of the cryptographic tools used by SGC proxy to
protect a ROS2 string message. The FogROS2-SGC Packet on the right is
the message that is routed by FogROS2-SGC. The payload is encrypted to
protect the confidentiality of the original ROS2 message. The encrypted data
is hashed so that the receiver can verify the message is intact. The hash is
signed with the sender’s key so that the receiver can verify that the message
comes from an authentic and authorized sender.

at Router 1’s RIB. If the destination is not found, the router
broadcasts a query to other routers. (6) The robot’s ROS2
publisher sends a ROS2 message to the proxy. The proxy
forwards it to Router 1, Router 1 forwards to Router 2, and
Router 2 to the cloud subscriber. At each hop, the messages
are forwarded from source to sink.

C. Secure Communication

The security of the communication is achieved by using a
secure network protocol between routers. We use Datagram
Transport Layer Security (DTLS) [35] to provide commu-
nications privacy. The DTLS protocol provides secure and
authenticated communication on User Datagram Protocol
(UDP) and includes a built-in mechanism for dealing with
lost or out-of-order packets. DTLS on UDP is well-suited
for latency-critical robotics communications systems due
to its lightweight nature and low overhead compared to
Transmission Control Protocol (TCP). The cryptographic
algorithms used to secure the ROS2 packet generation process
can be found in Fig. 5. The message has the following
security guarantees: Confidentiality: The ROS2 messages
are encrypted with AES Encryption [39] to ensure that
only parties with the correct cryptographic key can decrypt
the original ROS2 message data. Integrity: The encrypted
message is hashed by SHA-256 [36] so the receiver or third-
party auditor can easily verify that the message is intact and no
other attacker has tampered with the message. Authenticity:
The hashed message is signed by the RSASSA-PSS [40]

algorithm so that receivers can verify that the message is sent
from an authorized sender.

To tailor the security with the communication patterns of
robotics applications, FogROS2-SGC allows flexible peering
with other routers or end points. One may choose to use a
dedicated DTLS connection per ROS2 topic, which is ideal
for large message payload and frequent communication (e.g.,
video streaming). One may also choose to use a shared DTLS
tunnel, where multiple ROS2 topics share the same DTLS
connection. Sharing the same connection reduces the cost
of secure connection management and message processing,
which is ideal for small message payloads and less frequent
communication.

D. Transparent and Compatible SGC proxy

The SGC proxy is the interface between FogROS2-SGC
and the ROS2 network. In order to allow seamless inte-
gration with any unmodified ROS 2 application code and
mainstream DDS vendors, The SGC proxy converts between
ROS2 communication and FogROS2-SGC communication
bidirectionally. The user first identifies ROS2 topics that they
wish to publish or subscribe through a configuration file. The
proxy launches a local ROS2 publisher or subscriber for the
corresponding topic. New messages from the local ROS2
network are actively subscribed to by the proxy, and sent to
the FogROS2-SGC network. Once the verified subscribers
receive the messages, they convert them to standard ROS
messages and publish to their local ROS2 network.

To allow non-ROS2 programs to communicate with ROS2
nodes, SGC proxy converts ROS2 messages to a unified
JSON-based message format in transit. As a result, FogROS2-
SGC can be extended to a variety of protocols such as TCP,
UDP, DTLS, TLS, and gRPC. Note, however, that some
of the protocols need special handling to be aligned with
FogROS2-SGC. For example, gRPC requires the IP addresses
of both robot and cloud for bidirectional message passing.

E. Compute and Memory-Efficient SGC router

FogROS2-SGC can be deployed on low-power robots under
memory and compute constaints, so an efficient implementa-
tion of the routing algorithm in Section IV-B is crucial to the
overall performance of the system. Fig. 6 shows the architec-
ture of the SGC router. An idiomatic workflow of the router
implementation is to (1) receive data from ROS2/network, (2)
decide which network connection to forward, and (3) forward
data to ROS2/network. Because FogROS2-SGC needs to be
extensible to heterogeneous network protocols, the router
needs to maintain many simultaneous network connections,
ranging from ROS2’s publish/subscribe protocol to general
network protocol such as DTLS.

Because low-power robots run under memory constaints,
memory copying operations and synchronization operations
(such as mutex) are expensive. SGC router is implemented
in Rust [41] to eliminate memory copying operations and the
need for synchronization. Rust is a programming language
that features a single ownership model: every data object has
a single owner, and passing the data is moving the ownership

ROS2 Subscriber

DTLS Connection 1

Incoming

Other DTLS, TCP, gRPC, UDP connections…

RIB

ROS2 Publisher

DTLS Connection 2

Outgoing

Fig. 6: SGC router architecture. (Orange) Subscribe to a local ROS2
network and publish to FogROS2-SGC routing network. (Magenta) Receive
from FogROS2-SGC routing network and publish to local ROS2 network.
(Black) Intermediate SGC router that facilitates message routing. SGC router
asynchronously reads, writes, and manages all the network connections. All
the message passing (arrows) is zero-copy and does not require movement
of actual messages.

from one variable to another. As a result, it prevents race
conditions and reduces data copying by enforcing the passing
of data objects by references instead of values.

Robots with few CPU cores usually have low network
performance because network operations are usually blocking,
where the entire packet processing halts and waits for the
network operations to finish. FogROS2-SGC improves CPU
utilization by leveraging asynchronous Rust interfaces [42].
Asynchronous interfaces are non-blocking, removing the
network operations out of critical path of message processing.

V. E VA L U AT I O N

We evaluate FogROS2-SGC on system benchmarks to show
how it performs against alternative designs and on robotics
benchmarks to show how robotics applications benefit from
FogROS2-SGC. We also demonstrate FogROS2-SGC on four
physical robot arms running Fleet-DAgger [4], a multi-robot
learning application. In Sections V-A and V-B, we use an
Intel NUC with an Intel® Pentium® Silver J5005 CPU @
1.50 GHz with a 5 Mbps network connection to act as the
robot. The robot is connected with a Standard DS3 v2 cloud
instance (4 vCPUs, 14 GiB memory) on Microsoft Azure.
The robot is located in California (west coast of U.S.), and
the cloud server is located in Virginia (east coast of U.S.).

A. System Benchmarks

We evaluate the performance of FogROS2-SGC’s message
processing latency and throughput against other distributed
ROS2 systems. Messages are sent in binary with type
sensor msgs/CompressedImage and response with
string type std msgs/String. We compare against the
following baselines (1) VPN: We use Wireguard VPN [43],
which is the same VPN as FogROS2 [19]. (2) Rosbridge:
Rosbridge is the most commonly used websocket proxy that
allows non-ROS code to interact with ROS code. We use
Rosbridge in combination with Rosduct in the same way
as FogROS [18]. (3) Capsule: We use Capsule, a software
switch inspired by Netbricks [44], to emulate the design of
FogROS2-SGC. We also implement rosduct [8] in ROS2 that
converts between ROS2 and network traffic. The detailed
description and implementation can be found in FogROS-
G [45]. FogROS2-SGC uses the default DTLS network
protocol. We include FogROS2-SGC-TCP, a variant that
uses TCP instead of DTLS.

ROS2 Message Latency: We measure the Round Trip
Time (RTT) between when a robot publishes a ROS2 message

0 2000 4000 6000 8000

ROS Message Size(bytes)

0.0

0.5

1.0

1.5

La
te

nc
y(

s)

rosduct-rosbrige
rosduct-capsule
FogROS-SGC-TCP
VPN
FogROS-SGC

Fig. 7: Message round trip latency to the cloud (lower is better). Latency
is averaged over more than 50 packet window. FogROS2-SGC is 19 times
faster than rosbridge baseline for 8000 byte message.

Protocol Throughput (msg/second)

Original ROS 330.43
SROS2 320.17
Rosduct-Rosbridge 152.79
FogROS2-SGC-TCP 268.03
FogROS2-SGC 320.40

TABLE I: Message throughput evaluation of FogROS2-SGC (higher is
better). Every message is 1000 bytes. The throughput of FogROS2-SGC is
near native performance while adding secure and global connectivity and
2.1 times higher than rosbridge.

to the cloud and when data is received by the cloud, which
echoes a short message on a separate ROS2 topic. The RTT
also includes the time of parsing the messages and analyzing
the latency. The result can be found in Fig. 7. FogROS2-
SGC with DTLS has similar performance as VPN, which has
0.076s round trip latency for small messages. FogROS2-SGC
is 10.2% faster than VPN for 8000 byte messages (0.088 vs
0.097). FogROS2-SGC is 19× faster than rosduct-rosbridge
(0.088 vs 1.67). There are two reasons for this: (1) Rosduct
is implemented in Python and provably slower than Rust. It
uses blocking network operations while FogROS2-SGC uses
non-blocking asynchronous network operations for sending
and receiving data. (2) Rosbridge requires seralization of
binary messages in JSON, which require more bytes and lead
to larger messages.

ROS2 Message Throughput: Message throughput is
measured by the number of messages processed per second.
Different from other experiments, throughput is measured on
the local area network connected with Ethernet, in order to
prevent network bandwidth from being the bottleneck. Table
I shows the message processing throughput. FogROS2-SGC
achieves near-native throughput as ROS2 and incurs only
3% overhead due to the security and conversion to a unified
message format. FogROS2-SGC has 2.1× higher throughput
than rosbridge, because rosbridge requires more bytes to
serialize binary strings.

Startup and Advertisement Time: In a RIB that has
10,000 routing records, the average time for publishing a
name to the RIB takes 4ms and subscribing to a name from
RIB takes 2ms. The average startup time from starting a
program to receiving the first message takes 2.4 ms.

B. Cloud Robotics Application Benchmarks

We evaluate the network latency of FogROS2-SGC with
3 example cloud robotics applications: SLAM with ORB-
SLAM2 [46], Grasp Planning with Dex-Net [47], and Motion

vSLAM Grasp Planning Motion Planning

Scenario fr1
/xy

z1

fr1
/lo

op

raw
matr

ix

Com
pre

sse
d

Apa
rtm

en
t

Cub
icl

e

rosduct-rosbridge 10.31 10.29 20.3 13.67 0.08 0.08
VPN 1.16 1.45 5.7 1.47 0.07 0.07
FogROS2-SGC-TCP 1.19 1.57 8.4 1.58 0.07 0.07
FogROS2-SGC 1.15 1.42 - 1.45 0.07 0.07

TABLE II: Network latency of FogROS2-SGC on cloud robotics
applications (lower is better) FogROS2-SGC is better than rosduct-rosbridge
and VPN on vSLAM and compressed grasp planning. We conducted motion
planning on other scenarios (Home, TwistyCool) and the latency is the same.

Robot 1 Robot 2Robot 1 Robot 2

Robot 1

Server

3600km

Robot 2
3 41 2

Server
(Pittsburgh)

Action
Image

Fig. 8: The experiment setup of Fleet-DAgger. Two ABB YuMi robots
located in two separate buildings in Berkeley utilize computation from a
server located in Pittsburgh for an image based block pushing task.

Planning with Motion Planning Templates (MPT) [48]. The
detailed description of these benchmarks can be found in [18].

As detailed in Table II, although FogROS2-SGC can
scale to multiple robots and provide fine grained access
control for the robots, it demonstrates even better point-
to-point performance than VPN in the vSLAM and grasp
planning experiments. FogROS2-SGC is 9.42 times faster
than rosbridge-rosduct on compressed grasp planning images.
However, FogROS2-SGC cannot reliably transmit large and
uncompressed grasp planning matrices. The raw matrix after
serialization is larger than 13MB. We observe a significant
amount of lost and out of order messages because the default
transport protocol of FogROS2-SGC is DTLS over UDP and
the communication channel does not recover from lost and out
of order messages. Although transmitting such large message
within single ROS2 message is rare, users can choose other
supported transport protocols (such as TCP, gRPC) to meet
the requirement of their applications.

C. Case Study: Fleet-DAgger

We apply FogROS2-SGC to the control of a fleet of
4 physical robot arms, an increasingly relevant setting in
robotics and the third motivating example in Fig. 1. We
use the physical experiment setup from Fleet-DAgger [4],
where each robot simultaneously performs an image-based
block-pushing task (see Fig. 1C). The task is to repeatedly
push a cube to a goal region randomly generated in the
image, where a new goal is sampled from the reachable
workspace upon reaching the previous goal. The 4 workspaces
have an identical setup (but different block positions and
goals) to enable the aggregation of each robot’s data into a
shared dataset and training of a single shared policy on this
dataset, as is typical in fleet learning [4]. When autonomous
control is unreliable, the robots fall back on and learn from
remote human teleoperation, where global connectivity can
dramatically increase the number of available humans. The
arms belong to two bimanual ABB YuMi robots in two

Communication System Server Location Communication Time (s)

SSH + SFTP Berkeley, CA 0.86
Pittsburgh, PA -

FogROS2-SGC Berkeley, CA 0.31
Pittsburgh, PA 0.58

TABLE III: Communication time of SSH+SFTP and FogROS2-SGC
(lower is better). FogROS2-SGC with TCP reduces the communication time
per experiment step (i.e., one simultaneous action on the 4 arms) by 64%
when compared to SSH+SFTP, and has 33% lower communication time than
SSH+SFTP in Berkeley even if the server is moved to Pittsburgh. SSH does
not work if the server is in Pittsburgh due to a university firewall restriction.

different labs about 1 km apart with separate local area
networks. To test global connectivity, compute is off-loaded
to a separate node in a third local area network at Carnegie
Mellon University 3600 km away, where the robot nodes send
images of the current state and receive actions to execute.

In a previous implementation, Hoque et al. [4] use Secure
Shell (SSH) and Secure File Transfer Protocol (SFTP) to
communicate between robots and the centralized compute
node and Python multiprocessing to enable simultaneous
execution. This approach requires storing all SSH credentials
at a single node (a security concern), writing image data
to the file system of all nodes at every timestep, complex
asynchronous programming, and restricting all node locations
to within the university campus firewall. To mitigate these
issues, we (1) re-implement the communication system with
ROS2 and (2) seamlessly connect all nodes with FogROS2-
SGC with TCP by modifying only a single configuration text
file on each node. Relative to the previous implementation,
the FogROS2-SGC implementation reduces communication
time by 64% (Table III), where communication time includes
image transmission latency and synchronization across all
arms but not machine learning or arm motion. FogROS2-
SGC also reduces communication time by 33% relative to the
initial implementation even when the robots are in Berkeley,
CA and the server is moved to Pittsburgh, PA. Note that the
SSH method does not work between Berkeley and Pittsburgh
due to university network firewalls [49]. A diagram of the
system architecture is in Fig. 8.

V I . C O N C L U S I O N S A N D L I M I TAT I O N S

We present FogROS2-SGC, an extension of FogROS2
that securely connects robotics components across different
physical locations and networks. One limitation of FogROS2-
SGC is that users are unable to use retransmission and Quality-
of-Service (QoS) mechanisms provided by DDS for inter-
ROS2 network communication. However, users can flexibly
choose any supported transport protocol (e.g., TCP and gRPC).
FogROS2-SGC also requires the intermediate routers to open
certain ports for robots and services to connect.

A C K N O W L E D G E M E N T S

This research was performed at the AUTOLAB at UC
Berkeley in affiliation with the Berkeley AI Research (BAIR)
Lab. The authors were supported in part by donations from
Bosch and VMWare. The research is also supported by C3.ai
Digital Transformation Institute for AI resilience.

R E F E R E N C E S

[1] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research
on cloud robotics and automation,” IEEE Trans. Automation Science
and Engineering, vol. 12, no. 2, pp. 398–409, 2015.

[2] J. Ichnowski, K. Chen, K. Dharmarajan, S. Adebola, M. Danielczuk,
V. Mayoral-Vilches, H. Zhan, D. Xu, R. Ghassemi, J. Kubiatowicz,
et al., “FogROS2: An adaptive and extensible platform for cloud and
fog robotics using ros 2,” arXiv preprint arXiv:2205.09778, 2022.

[3] “FogROS2 Official ROS2 Repository,” https://index.ros.org/p/fogros2/.
[4] R. Hoque, L. Y. Chen, S. Sharma, K. Dharmarajan, B. Thananjeyan,

P. Abbeel, and K. Goldberg, “Fleet-DAgger: Interactive robot fleet
learning with scalable human supervision,” Conference on Robot
Learning (CoRL), 2022.

[5] S. Sumikura, M. Shibuya, and K. Sakurada, “OpenVSLAM: A
versatile visual slam framework,” in Proceedings of the 27th
ACM International Conference on Multimedia, ser. MM ’19. New
York, NY, USA: ACM, 2019, pp. 2292–2295. [Online]. Available:
http://doi.acm.org/10.1145/3343031.3350539

[6] A. S. Eddington, The mathematical theory of relativity. The University
Press, 1923.

[7] V. Mayoral-Vilches, R. White, G. Caiazza, and M. Arguedas, “SROS2:
Usable cyber security tools for ros 2,” arXiv e-prints, pp. arXiv–2208,
2022.

[8] “rosduct,” https://github.com/uts-magic-lab/rosduct.
[9] C. Crick, G. Jay, S. Osentoski, and O. C. Jenkins, “ROS and Rosbridge:

Roboticists out of the loop,” in 2012 7th ACM/IEEE International
Conference on Human-Robot Interaction (HRI), 2012, pp. 493–494.

[10] “Scalable Distributed Robot Fleet With Fast DDS Discovery Server,”
https://husarnet.com/blog/ros2-dds-discovery-server, accessed: 2023-
03-1.

[11] N. Tian, M. Matl, J. Mahler, Y. X. Zhou, S. Staszak, C. Correa,
S. Zheng, Q. Li, R. Zhang, and K. Goldberg, “A cloud robot system
using the dexterity network and Berkeley robotics and automation as a
service (BRASS),” in Proc. IEEE Int. Conf. Robotics and Automation
(ICRA), 2017, pp. 1615–1622.

[12] B. Kehoe, A. Matsukawa, S. Candido, J. Kuffner, and K. Goldberg,
“Cloud-based robot grasping with the google object recognition engine,”
in Proc. IEEE Int. Conf. Robotics and Automation (ICRA), 2013, pp.
4263–4270.

[13] P. Li, B. DeRose, J. Mahler, J. A. Ojea, A. K. Tanwani, and K. Goldberg,
“Dex-Net as a service (DNaaS): A cloud-based robust robot grasp
planning system,” in Proc. IEEE Conf. on Automation Science and
Engineering (CASE), 2018, pp. 1420–1427.

[14] B. Kehoe, D. Berenson, and K. Goldberg, “Estimating part tolerance
bounds based on adaptive cloud-based grasp planning with slip,” in
Proc. IEEE Conf. on Automation Science and Engineering (CASE),
2012, pp. 1106–1113.

[15] B. Kehoe, D. Berenson, and G. Ken, “Toward cloud-based grasping
with uncertainty in shape: Estimating lower bounds on achieving force
closure with zero-slip push grasps,” in Proc. IEEE Int. Conf. Robotics
and Automation (ICRA), 2012, pp. 576–583.

[16] B. Kehoe, D. Warrier, S. Patil, and K. Goldberg, “Cloud-based grasp
analysis and planning for toleranced parts using parallelized Monte
Carlo sampling,” IEEE Trans. Automation Science and Engineering,
vol. 12, no. 2, pp. 455–470, 2014.

[17] M.-L. Lam and K.-Y. Lam, “Path planning as a service PPaaS: Cloud-
based robotic path planning,” in Proc. IEEE Int. Conf. on Robotics
and Biomimetics (ROBIO), 2014, pp. 1839–1844.

[18] K. E. Chen, Y. Liang, N. Jha, J. Ichnowski, M. Danielczuk, J. Gonzalez,
J. Kubiatowicz, and K. Goldberg, “FogROS: An adaptive framework for
automating fog robotics deployment,” in 2021 IEEE 17th International
Conference on Automation Science and Engineering (CASE). IEEE,
2021, pp. 2035–2042.

[19] J. Ichnowski, W. Lee, V. Murta, S. Paradis, R. Alterovitz, J. E. Gonzalez,
I. Stoica, and K. Goldberg, “Fog robotics algorithms for distributed
motion planning using lambda serverless computing,” in Proc. IEEE
Int. Conf. Robotics and Automation (ICRA), 2020, pp. 4232–4238.

[20] R. Anand, J. Ichnowski, C. Wu, J. M. Hellerstein, J. E. Gonzalez, and
K. Goldberg, “Serverless multi-query motion planning for fog robotics,”
in Proc. IEEE Int. Conf. Robotics and Automation (ICRA). IEEE,
2021.

[21] G. McGrath and P. R. Brenner, “Serverless computing: Design,
implementation, and performance,” in 2017 IEEE 37th International
Conference on Distributed Computing Systems Workshops (ICDCSW).
IEEE, 2017, pp. 405–410.

[22] G. Swamy, S. Reddy, S. Levine, and A. D. Dragan, “Scaled autonomy:
Enabling human operators to control robot fleets,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 5942–5948.

[23] A. K. Tanwani, R. Anand, J. E. Gonzalez, and K. Goldberg, “RI-
LaaS: Robot inference and learning as a service,” IEEE Robotics &
Automation Letters, vol. 5, no. 3, pp. 4423–4430, 2020.

[24] S. Bauer, F. Widmaier, M. Wüthrich, N. Funk, J. U. D. Jesus,
J. Peters, J. Watson, C. Chen, K. Srinivasan, J. Zhang, J. Zhang,
M. R. Walter, R. Madan, C. B. Schaff, T. Maeda, T. Yoneda, D. Yarats,
A. Allshire, E. K. Gordon, T. Bhattacharjee, S. S. Srinivasa, A. Garg,
A. Buchholz, S. Stark, T. Steinbrenner, J. Akpo, S. Joshi, V. Agrawal,
and B. Schölkopf, “A robot cluster for reproducible research in
dexterous manipulation,” arXiv preprint arXiv:2109.10957, 2021.

[25] J. Z. Lim and D. W.-K. Ng, “Cloud based implementation of ROS
through VPN,” in Int. Conf. on Smart Computing & Communications
(ICSCC). IEEE, 2019, pp. 1–5.

[26] S. S. H. Hajjaj and K. S. M. Sahari, “Establishing remote networks
for ROS applications via port forwarding: A detailed tutorial,” In-
ternational Journal of Advanced Robotic Systems, vol. 14, no. 3, p.
1729881417703355, 2017.

[27] eProsima, “Fast DDS,” https://www.eprosima.com/index.php/
products-all/eprosima-fast-dds.

[28] “RTI Connext DDS,” https://www.rti.com/products.
[29] “Integrating ROS2 with Eclipse zenoh,” https://zenoh.io/blog/

2021-04-28-ros2-integration/, accessed: 2021-02-15.
[30] A. B. M. Pereira, R. E. Julio, and G. S. Bastos, “ROSRemote: Using

ROS on cloud to access robots remotely,” in Robot Operating System
(ROS). Springer, 2019, pp. 569–605.

[31] B. Xu and J. Bian, “A cloud robotic application platform design based
on the microservices architecture,” in Int. Conf. on Control, Robotics
and Intelligent System, 2020, pp. 13–18.

[32] E. Boasson, A. Corsaro, and H. van t Hag, “Eclipse Cyclone DDS,”
https://projects.eclipse.org/projects/iot.cyclonedds.

[33] “Google Remote Procedure Call,” https://grpc.io/.
[34] M. Myers, C. Adams, D. Solo, and D. Kemp, “Internet x. 509 certificate

request message format,” Tech. Rep., 1999.
[35] “Signature and hash algorithms for TLS and DTLS,” https://www.ibm.

com/docs/en/zos/2.5.0?topic=support-signature-hash-algorithms.
[36] A. W. Appel, “Verification of a cryptographic primitive: Sha-256,”

ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 37, no. 2, pp. 1–31, 2015.

[37] N. Mor, R. Pratt, E. Allman, K. Lutz, and J. Kubiatowicz, “Global
data plane: A federated vision for secure data in edge computing,” in
2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2019, pp. 1652–1663.

[38] “Multicast DNS RFC 6762,” https://www.rfc-editor.org/rfc/rfc6762.
html.

[39] J. Daemen and V. Rijmen, “AES proposal: Rijndael,” 1999.
[40] “RSASSA-PSS RFC 4056,” https://www.rfc-editor.org/rfc/rfc4056.
[41] N. D. Matsakis and F. S. Klock II, “The rust language,” in ACM

SIGAda Ada Letters, vol. 34, no. 3. ACM, 2014, pp. 103–104.
[42] “Tokio,” https://tokio.rs/.
[43] “wireguard VPN,” https://www.wireguard.com/.
[44] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,

“{NetBricks}: Taking the v out of {NFV},” in 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), 2016,
pp. 203–216.

[45] K. Chen, J. Yuan, N. Jha, J. Ichnowski, J. Kubiatowicz, and K. Goldberg,
“FogROS G: Enabling secure, connected and mobile fog robotics with
global addressability,” arXiv preprint arXiv:2210.11691, 2022.

[46] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An open-source slam
system for monocular, stereo, and RGB-D cameras,” IEEE Trans.
Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[47] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A.
Ojea, and K. Goldberg, “Dex-Net 2.0: Deep learning to plan robust
grasps with synthetic point clouds and analytic grasp metrics,” in Proc.
Robotics: Science and Systems (RSS), 2017.

[48] J. Ichnowski and R. Alterovitz, “Motion planning templates: A motion
planning framework for robots with low-power CPUs,” in Proc. IEEE
Int. Conf. Robotics and Automation (ICRA), 2019.

[49] “UC Berkeley Minimum Security Standard,” https://security.berkeley.
edu/policy/minimum-security-standards-networked-devices-mssnd.

