
72 pt
1 in

25.4 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

Margin requirements for first page
Paper size this page US Letter

FogROS2-LS: A Location-Independent Fog Robotics Framework
for Latency Sensitive ROS2 Applications

†Kaiyuan Chen1,2, Michael Wang2, Marcus Gualtieri2, Nan Tian2, Christian Juette2,
Liu Ren2, Jeffrey Ichnowski4, John Kubiatowicz1 and Ken Goldberg1,3

Abstract— In Cloud Robotics, long system latency due to
varying network conditions can cause instability and collisions.
However, this can be minimized in the almost univeral case
where there are multiple sources available for cloud servers.
By extending anycast routing, we introduce FogROS2-Latency-
Sensitive, a Fog Robotics framework that offers secure, location-
independent connections between robots and latency-sensitive
cloud-based servers. FogROS2-LS offloads conventional on-
board state estimators and feedback controllers to Cloud and
Edge compute hardware without modifying existing applica-
tions in ROS2. In the presence of multiple identical services,
FogROS2-LS dynamically identifies and transitions to the
optimal service deployment that meets latency requirements,
thereby empowering robots with limited on-board computing
capacity to safely and efficiently navigate dynamic, human-
dense environments. We evaluate FogROS2-LS with two latency
sensitive case studies: (1) Collision Avoidance: a robot arm
guided by visual feedback from consistent distance estimation
and collision checking on Cloud and Edge. FogROS2-LS
reduces collision failures by up to 8.5x by selecting the best
available server, and (2) Target Tracking: FogROS2-LS enables
robust and continuous target following and can recover from
network failures. Videos and code are available on the website
https://sites.google.com/view/fogros2-ls.

I . I N T R O D U C T I O N

Cloud, or fog Robotics ([1], [2], [3]) enables robots to
access external computing resources for (1) advanced visual
perception ([4], [5], [6], [7], [8]); and (2) reinforcement
learning-based intelligent motion control ([9], [10]). Our
previous work introduced FogROS2—now an official part of
the ROS2 ecosystem—which outsources heavy computing
tasks to on-demand hardware resources and accelerators, such
as GPU, TPU, ASIC, FPGA, and high performance CPU
servers.

A common misconception about Cloud and Fog robotics is
that they are unsuitable for latency-sensitive and safety-critical
tasks due to network failures and congestion.

In this work, we assume the existence of multiple inde-
pendent cloud compute servers and provideres, and present
FogROS2-Latency Sensitive, a Fog Robotics framework
that enables reliable latency performances by dynamically
selecting the optimal service out of all available servers. We
evaluate its effectiveness in real robotics experiments with
collision avoidance and continuous target tracking (Fig. 1).

1Department of Electrical Engineering and Computer Science
2Robert Bosch Research and Technology Center North America, Sunny-

vale, CA, USA
3Department of Industrial Engineering and Operations Research
1,3University of California, Berkeley, CA, USA
4Robotics Institute, Carnegie Mellon University
†For correspondence and questions: kych@berkeley.edu

Fig. 1: A Sample Use Case of FogROS2-LS FogROS2-LS enables the
location-independent deployment of fog robotics applications, allowing robots
to connect with distributed robotic services with a unified ROS2 interface. It
enables robust operation of latency sensitive applications, such as tracking or
collision detection, by connecting robots to service deployments that satisfy
these bounds.

ROS2 [11] is the de-facto platform for building robotics
applications in a location-independent way: heterogeneous
robots and modular services1 publish to and subscribe from
(pub/sub) each other as if they are running on the same
machine. However, completely adhering to the ROS2 multiple-
party pub/sub communication paradigm in fog robotics falls
short on the following aspects: (1) Mirrored robotics services
can be distributed to heterogeneous geographic locations
and network domains. The framework needs to globally
and securely discover and connect robots with those service
deployments, while differentiating services hosted by other
users or tasks. (2) The pub/sub paradigm leads to the request
being published to all the deployments, leading to more
network congestion and failure. While still adhering to ROS2
interfaces, a robot should select the one deployment that
fulfills the application-specific latency bound. (3) Deployment
selection should be adaptive to fluctuating application latency
caused by varying network latency and hardware resource
utilization, and network failures

FogROS2-LS introduces a latency-aware location inde-
pendent routing architecture. It enables launching multiple
instances of robotics task servers across different geograph-
ical and network domains, all identifiable by a location-
independent identifier unique to the task. Robots use this

1Service in this paper refers to generic robotics application instead of the
specific ROS2 service communication model. FogROS2-LS supports both
publish-subscribe and service communication models in ROS2.



54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

Margin requirements for the other pages
Paper size this page US Letter

identifier for global discovery and selection of service
deployments based on dynamic ROS2 application latency
analysis. FogROS2-LS enforces an anycast invariant [12], in
which each robot subscribes to exactly one service deploy-
ment. When failures or latency variations occur, FogROS2-
LS seamlessly switches to an alternative deployment that
meets the latency constraints, while adhering to the anycast
invariance.

To evaluate FogROS2-LS, we performed two latency-
critical robotic experiments using FogROS2-LS: (1) collision
checking via visual feedback for safe robot arm deceleration,
and (2) target following using rapid visual detection feed-
backed to a reactive motion planner. Experiments suggest that,
compared to using on-board perception modules, Edge/Cloud
services via FogROS2-LS provide more timely and reliable
performance, enabling safer and more on-track robot control,
respectively. We also show that a hybrid service built with
FogROS2-LS, a combination of Edge and Cloud service with
automatic service switching, is more robust than standard
services against system failures because FogROS2-LS allows
failure recovery to backup services when one or more services
become unreliable or disconnected due to network conditions
or computation availability.

This paper claims make four contributions: 1) a loca-
tion-independent network routing framework that enables
robots to discover and connect with fog robotics services
across different network domains, 2) a state machine-based
Anycast communication paradigm that simplifies the routing
management and adheres to the publish/subscribe paradigm
in ROS2, 3) adaptive routing based on real-time profiling
of latency, and 4) data from an experimental evaluation of
FogROS2-LS on two latency sensitive scenarios.

A. Five System features

FogROS2-LS provides the following five key features:
a) No Application Modification: Unmodified ROS2

applications work with FogROS2-LS and operate as though
all modules reside on a single computer. FogROS2-LS works
for heterogeneous ROS2 transport middleware configurations
and network setups.

b) Location Independence: The robotics services can
be deployed at different geographic locations and network
domains. FogROS2-LS interconnects them with robots as if
they were all on the same computer.

c) Latency Boundedness: FogROS2-LS selects and
connects to a service deployment that fulfills the time bound
defined by the user.

d) Anycast Invariant: FogROS2-LS maintains the any-
cast invariance that routes robot requests to the optimal service
deployment determined by a user-defined latency constraint.

e) Adaptivity: FogROS2-LS adapts its service selection
to fluctuating network conditions and application latency.

I I . R E L AT E D W O R K

A prevailing trend indicates an increasing demand for
robots to employ resource-intensive models and algorithms
for accurate perception and control. Popular visual perception

modules include Segment Anything (SAM) [5], semantic VS-
LAM [6], Neural Radiance Fields (NeRF) [7], and Language
Embedded Radiance Fields (LERF) [8]. Intelligent motion
control modules include learning hand-eye coordination with
grasping [13], Model Predictive Path Integral (MPPI) [9],
and Robotic Transformer 2 (RT2) [14]. The complexity of
large or foundational models necessitates more than just the
robot onboard computing capabilities. Fog Robotics [1] has
been proposed, as a generalization of Cloud Robotics [15], to
balance centralized cloud and distributed edge resources to
reduce latency, enhance performance, and facilitate real-time
processing and decision-making in robotic systems [16]. Fog
Robotics have been applied to various robotics applications,
such as grasp planning [3], motion planning [2], visual ser-
voing [17], inference [18], and human-robot interaction [19].

Robot Operating System (ROS) 2 [11], the successor
of ROS, is the de-facto standard for developing robotics
applications due to its broad availability and adaptability. In
ROS 2, computational modules are abstracted into nodes,
and they communicate with each other using a multi-
party publish/subscribe paradigm through topics. All nodes
subscribing to the same topics receive data from other
nodes that publish them. Over the past decades, various
attempts have been made to enable robotics applications
in ROS or ROS2 to leverage Cloud or Fog computational
resources. Rapyuta Mohanarajah et al. [20] is a proprietary
platform for centralized management and deployment of ROS
application pipelines. Chen et al. [21] propose FogROS, a
cloud robotics framework that offloads ROS applications
to the public cloud. Ichnowski et al. [22] and Chen et
al. [23] extend FogROS with ten major features, including
ROS2 support and major cloud service providers. FogROS2-
SGC (Secure and Global Connectivity) [24][25] connects
distributed ROS2 nodes through a global peer-to-peer network.
In this work, we build upon the FogROS design philosophy,
allowing for offloading and connecting robots with ROS2
applications without any code modifications. Furthermore, we
extend our study to enabling latency sensitive fog robotics
applications. On the technique side, FogROS2 uses Virtual
Private Network (VPN) optimized for single cloud and
robot, and FogROS2-SGC lacks flexible network routing
management. In contrast, our approach in FogROS2-LS
leverages the unique communication paradigm Anycast. This
allows robots the flexibility to connect to one of several
location-independent services and dynamically switch to meet
application latency constraints.

I I I . F O G RO S 2 - L S D E S I G N

FogROS2-LS, illustrated in Fig. 2, enables latency-sensitive
robotics applications by deploying replicated services in
a location-independent manner and connecting with user-
specified time constraints. Location-independent robotic
service is achieved through a secure and global routing
framework (Sec. III-A) that associates local ROS2 topics with
globally-unique and secure identifiers. The same services can
be replicated at different geographic locations with the same
identifier, allowing robots to discover the location independent



54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

Margin requirements for the other pages
Paper size this page US Letter

Adaptive Routing Scheduler (III.C)

Fo
gR

O
S2

-L
S

An
yc

as
t (

III
.B

)

Robot

Fast 
Deployment

Slow 
Deployment

Failed 
Deployment

Fig. 2: System Diagram of FogROS2-LS components FogROS2-LS enables
latency-sensitive fog robotics applications through an adaptive scheduler that
generates routing policies. The routing policy directs robots to connect with
the optimal service deployment by Anycast.

services and connect as if the service were on the same
machine. FogROS2-LS uses Policy-Guided Anycast (Sec. III-
B) to address the challenge of choosing a single deployment
from several instances sharing the same identifier without any
application or interface modifications of ROS2. This approach
enables connection to a single service deployment based on
a routing policy. This policy is dynamically generated by
the Adaptive State Machine Scheduler (Sec. III-C), which
monitors and orchestrates application latency.

A. Location Independent Routing

Location Independent and Unique Identifiers FogROS2-
LS enables multiple location independent deployments of the
same service by assigning a shared globally unique identifier
to all the service deployments. Robots can deterministically
generate the identifier to discover and connect with the
service. FogROS2-SGC details the identifier cryptographic
construction process, in which an unauthorized attacker
attempting a brute-force attack would have to guess the service
identifier or reverse the information used to generate it among
1077 possibilities, a value near the number of protons in the
observable universe. The original FogROS2-SGC uses this
property for mobility, allowing robots to move freely across
different network domains. FogROS2-LS extends FogROS2-
SGC’s identifier generation process so that multiple servers at
various geographic locations can host the same ROS2 service
by assigning their service interfaces with the same identifier.
FogROS2-LS also supports identifier generation for both
ROS2 publish/subscribe and service/client communication
paradigm.

Flexible Global Service Discoverability and Connectivity
Given a shared identifier associated with a fog robotic service
replicated across various geographical locations, robots face
the challenge of globally discovering and connecting to these
deployments. This task is challenging due to heterogeneous
network domains, firewalls, and Network Address Translation
(NAT) [26], which sometimes restrict accessibility to network
addresses or ports outside of certain domains. It is further
complicated by the flexibility requirement of FogROS2-LS
that the robot can dynamically select the service based on
the latency requirement.

Robot Fast Deployment Slow Deployment

State: 
Standby

State: 
Service

(a) Multi-party Pub/Sub (b) Anycast Pub/Sub (c) Policy-Guided
Anycast Pub/Sub

Fig. 3: Comparison of Publish/Subscribe and Anycast Communication
Paradigms ROS2’s publish/subscribe paradigm publishes a message (e.g. a
request from robots) to all existing subscribers, which wastes computational
and network resources. In our context, the Anycast paradigm is more
appropriate, as it forwards to only the most optimal deployment based
on the policy.

FogROS2-LS achieves flexible global discoverability by
maintaining a global routing information base, a centralized
registry storing all routing data, enabling newcomers to
directly connect with existing publishers and subscribers.
This registry solely aids in connection establishment and
maintenance without data routing. This provides two clear
benefits: (1) it is sufficiently lightweight to operate on low-
end servers, with UC Berkeley offering a public version; (2)
it enables flexible packet control to specific endpoints by
direct robot-service connections, since intermediary routers
can introduce protocol complexities and inefficiencies.

FogROS2-LS enables global connectivity through proxying
local ROS2 communication to WebRTC [27], a peer-to-peer
network transport protocol that facilitates global connections
and is commonly used for web-based video conferencing.
We refer readers to [27] for its design and guarantees. In
FogROS2-LS, the global routing information base maintains
the WebRTC channel details of current publishers and
subscribers, allowing newcomers to utilize this information
to directly establish WebRTC connections with existing
participants.

B. Policy-Guided Anycast

Many ROS2 applications utilize the publish/subscribe
paradigm in ROS2 to emulate a server and client setup,
where the robot client publishes to the request topic and
subscribes from the response topic, while the server subscribes
from the request topic and publishes to the response topic.
This emulation works if only one service deployment exists
in the network. Otherwise, the robot may send requests
to multiple deployments (Fig 3.A), wasting compute and
network resources in the context of multiple deployments
of the same service. Additionally, the robot could receive
duplicated responses from multiple deployments.

Recognizing that robots need to communicate with only
one of the services, FogROS2-LS resolves this issue by
formulating Anycast to describe this one-to-one-of-many
relationship: the request message only needs to be forwarded
to any of the deployment that subscribes to the request topic,
instead of all of them. Other idle service deployments in ROS2
consume negligible network and CPU resources, which can



54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

Margin requirements for the other pages
Paper size this page US Letter

be used to handle other robots or services. However, we note
that this is conceptually different from IP Anycast [12]: IP
Anycast concentrates on routing packets to a destination IP
address shared by multiple locations, while FogROS2-LS
bridges publish/subscribe to one of many services (Fig 3.B).

FogROS2-LS enables Anycast by managing its global
routing state: which ROS2 topics should be globally dis-
coverable, published, or subscribed to. Anycast is achieved
when a single service deployment subscribes to service request
topics and publishes to service response topics, with the robot
maintaining a location-independent connection exclusively
with that service deployment. Given that a service may use
multiple ROS2 topics, we use state to refer to the aggregation
of the global topic publish or subscribe relationship of a
robot or service deployment at a specific time. An example
of the state definition can be found in Listing 1. FogROS2-LS
has predefined three states to facilitate Anycast: the robot
state designated for the robot, the service state for actively
managing requests, and the standby state which prevents the
exposure of any global service topics to other machines. One
can also define their own state, but additional adaptation is
required for anycast invariance.

Each FogROS2-LS-integrated robot or service operates its
own state machine. To switch from one service deployment
to another, the scheduler reassigns the state machine, marking
the old deployment as standby, and the new one as service.
FogROS2-LS automates the state transitioning by tearing
down the network connections of the previous state, updating
the global routing information base, and establishing the
connections for the new state.

We transform an intricate network routing management
problem into a straightforward state machine management
problem. Instead of designing networking protocols and
maintaining complex routing states, we only need to keep the
invariant that only one service deployment is in service state,
while other deployments are in standby state (Fig 3.C). In
FogROS2-LS, the collective states of all the state machines for
the robot and service form the policy, which is user-initialized
(Listing 1) and overseen by an adaptive scheduler (Sec. III-C).
To minimize the service interruption of state transitioning,
FogROS2-LS maintains the underlying network connection
from previous services, merely pausing the packet forwarding
instead of completely tearing down the connections. This
strategy leverages the minimal overhead involved in keeping
a network connection active, allowing for the reuse of these
connections when switching for those services that require
continuous operation.

C. Adaptive Time-Bounded Policy Scheduler

FogROS2-LS ensures an application’s adherence to the time
constraint by monitoring the application latency, checking
if the latency fulfills the bound, and dynamically adjusting
its routing policy. The latency is profiled by adjusting the
routing rules ahead of the deployment. The necessity for a
user-defined time bound is to avoid impractical monitoring
of the most optimal machine and to prevent overly frequent
switching.

1 # III.B
2 state_definition:
3 standby: # do not publish or subscribe to any topics
4 service:
5 topics:
6 - /yolo/input: sub # subscribes to YOLO input
7 - /yolo/output: pub # publish to YOLO output
8 robot:
9 topics:

10 - /yolo/input: pub # subscribes to YOLO input
11 - /yolo/output: sub # publish to YOLO output
12 params:
13 - /camera: rgb_module.profile:=640x480x30
14

15 initial_policy:
16 turtlebot: robot
17 machine_edge: service
18 machine_cloud: standby
19

20 # Section III.C Adaptive Latency Monitoring
21 latency_bound:
22 median: 0.3 # in second, max/min/median/mean/stddev

State Definition

Initial Policy

Listing 1: FogROS2-LS State and Policy Configuration File Example
This state definition section illustrates how the user specifies the
machine’s state—such as standby, which the node remains idle, and
service, which the node actively listens for input requests and outputs to
the response topic. The state machine also allows specifying the parameters
such as camera frame rate and resolution. User can also add their own
custom states. The second half of the configuration file defines the desired
latency bound for the messages from the request topic and response topic.

FogROS2-LS uses a centralized scheduler to determine
which machine should be the service machine for the robot.
The scheduling decision translates to the actual state machine
updates that are synchronized across all available deployments
for consistency and fault tolerance. The scheduler passively
monitors the application latency and is triggered when the
application fails to fulfill the latency bound or if the current
service machine is disconnected. The scheduling decision is
based on historical profiling results on both active and idle
service deployments. The scheduler temporarily directs the
messages to the selected service and collects latencies for a
short period of time. FogROS2-LS gathers application latency
profiles at bootstrapping and when none of the available
machines fulfill the latency bound based on the past data.

To accommodate diverse ROS2 applications, FogROS2-LS
provides three latency collection mechanisms: (1) measure-
ment of the difference between the request and response
time of ROS2 services, (2) heuristics to align the request
and response topics in ROS2 pub/sub and to get the timing
difference of the request topic and response topic, and (3)
direct input of latency from a pre-defined ROS2 interface.

I V. R O B O T I C S E VA L U AT I O N

We demonstrated location-independent FogROS2-LS ser-
vices with two latency-sensitive physical robotics tasks: (A)
high-speed collision avoidance (Fig. 4) and (B) continuous
object following (Fig. 5). Both tasks required continuous
visual feedback from the robots and time-sensitive controls
back to the robots. The first task required a single time-
sensitive command while the second required continuous
commands. To offload visual perception to both edge and
cloud servers, we streamed online camera feeds from these
robots to off-board servers via FogROS2-LS for continuous



54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

Margin requirements for the other pages
Paper size this page US Letter

Fig. 4: High Speed Collision Avoidance Evaluation (a) The robot arm approached the target with maximum speed and decelerates at 5cm away from the
target based on the visual detection of the QR Code. Delayed estimation leads to failure by collision. (b) Architecture of multiple off-board perception
servers both on the Edge and in the Cloud (c) Baseline experimental results (without network delays) showing that FogROS2-LS reduces failure by 3.7x
when two Cloud servers were available to support a location independent service, compared to the case of a single, far away Cloud (E) service.

Delay added to Edge 1 Edge 1 Edge 1

Failure Rate (%) Only + Edge 2 + Cloud(W) + Cloud(E) + Cloud(W) + Cloud(E)

x ms Applied to 100% Packets 56.7% 0.0% 10.0% 30.0% 6.7%

(Failure Reduction) (∞) (5.7x) (1.9x) (8.5x)

x ms Applied to 50% Packets 26.7% 0.0% 6.7% 53.3% 10.0%

(Failure Reduction) (∞) (4.0x) (0.5x) (2.7x)

TABLE I: When local network was congested, FogROS2-LS reduced failures: Upon application of random network delays on Edge #1, FogROS2-LS
automatically re-route to alternative services, i.e. Edge 2, Cloud(W), Cloud(E). Such automatic switching functionality to an alternative, location independent
service(s) improves robustness of the system and reduced failure rate (lower the better) of the overall system. FogROS2-LS matches performance of the best
individual machine, reducing the failure rate by up to 8.5 times by selecting the best available machine compared to single edge service system under heavy
network congestion. We also showed that FogROS2-LS enabled flexible yet reliable access to open cloud services via Anycast to reduce failure rate.

QR Code pose estimation (AprilTag [28]). 6D pose of the
target and robotics control signals were then sent back, also
via FogROS2-LS, to complete the feedback loop. FogROS2-
LS continuously monitored the round trip time of each frame
of pose estimation on all available edge and cloud servers
connected to the operating robot during run time.

When the current service failed to return 6D poses to the
robot within the designated time, FogROS2-LS autonomously
switched to another operational service. This approach en-
hances system robustness, both by averting potential failures,
such as in collision avoidance scenarios, and by facilitating
recovery in instances of continuous object tracking.

A. Collision Avoidance

Setup Fig. 4 shows the physical setup of the collision
avoidance evaluation. The Universal Robots arm (UR10e),
with an Intel RealSense D435i mounted on the wrist, advanced
towards the QR Code at maximum speed (measured at 1.3
m/sec). Meanwhile, the camera sent a monocular video stream
to the Edge or Cloud at 640x480 resolution, maintaining
a steady QR Code 6D pose estimation at 90 Hz. Due to
bandwidth limitations, we streamed the video to the cloud
with H.264 compression. We streamed Video to a local edge
server via series of compressed images rather than H.264, as
edge network has better bandwidth. The robot arm underwent
maximum deceleration if robot arm recognized that it was
5 cm away from the target. It is considered failure if the

off-board robot command, in response to the visual detection,
failed to reach the robot in time, causing the robot arm to
collide with the target that holds the QR code.

We used FogROS2-LS to connect the robot controller
to various Edge or Cloud servers. We isolated the ROS
nodes on the robot controller from Edge server’s using ROS2
domains to avoid cross interference. All the experiments were
conducted 30 times. Prior to each run, FogROS2-LS profiled
networks for up to 100 ms per machine. It then selected the
machine with the lowest round-trip latency that can fullfill
the configured time-bound. It then pauses for 500 ms to allow
H.264 stabilization before each robotics trial begin.

Results To benchmark, we calculated the failures rate
over the 30 trials for baseline (Fig. 4 (c)) and local network
congestion (Table I). We showed that the location-independent
service built with FogROS2-LS reduced the failure rate of
the collision avoidance robot task, because FogROS2-LS can
choose the best available service automatically via Anycast.

FogROS2-LS can reduce the failure rate by up to 8.5
times. When 100% network latency is applied and the cloud
is available, FogROS2-LS chooses Cloud for almost all the
trials, and the overall performance is close to the performance
of the Cloud. Notably, FogROS2-LS can perform better than
any available standalone machines by selecting the available
machine with best latency at a given moment. It can achieve
an even lower failure rate of up to 1.5 times lower than that
of any single machine available.



54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

Margin requirements for the other pages
Paper size this page US Letter

Fig. 5: Position of Mobile Robot Relative to a Circular Path. (a) & (b) Setup & Architecture; (c), the mobile robot successfully follows the circular path
when no network inference was introduced; (d), a 50 ms network delay was introduced after the initial quadrant, causing mobile robot to immediately
deviate from the path; (e) showcases FogROS2-LS’s ability to recover from the failure encountered by transitioning to another Edge server.

In all the series of experiments, one failure case occurred–
when 50% latency was applied to Edge 1 and FogROS2-
LS offload perception to Cloud US East. The failure rate
of the combined Cloud-Edge was worse than that of the
original Edge 1 machine. This outcome was caused by
imprecise network profiling due to the following reasons:
(1) substantial network variation for Edge and Cloud is
not practical for optimization; (2) while the FogROS2-LS
network profiler operates under the assumption of uncorrelated
request latencies, the H.264 compression alternates between
transmitting a complete image frame and sending only the
difference from the previous frame, so request latencies can
be correlated in time.

B. Continuous Target Following

Setup We used MyAGV [29] for a continuous target
following experiment. This fast-moving mobile vehicle has
Mecanum omnidirectional wheels, a Raspberry Pi 4, and an
Intel RealSense D435i camera. During the experiment, it
tracked the QR code on the UR10e robot arm such that the
robot aimed to stay 0.5 meters away in the normal direction
of the tag. The wrist of UR10e maintains a rotation speed
of 0.075 rad/s, guiding mobile robot in a circular path. In
the meantime, the Raspberry Pi runs FogROS2-LS to stream
the RGB video to the Edge server at 424x240 resolution at
30 Hz with an Ethernet cable. The position of MyAGV w.r.t.
the start is estimated as R(θ)x, where R(θ) is a 2x2 rotation
matrix with angle θ , θ is the angle reading of the UR10’s
wrist joint, and x is the detected 2x1 position of MyAGV’s
camera w.r.t. the QR code. In the evaluation, we use two
identical Edge servers connecting to MyAGV via FogROS2-
LS, one executes QR Code detection, while a backup Edge
server remains on standby. While the MyAGV progresses past
the first quadrant (90 degrees) of the target circluar path, we

introduce a 50ms network latency, causing a tracking failure
and deviation from the trajectory. A successful FogROS2-
LS switch should facilitate tracking recovery, allowing the
system to resume object tracking by leveraging the backup
Edge server.

Results Fig. 5 shows the the results of target following
with FogROS2-LS. In the presence of 50 ms network latency
after the initial quadrant, MyAGV deviates from the path.
FogROS2-LS is able to recover from the failure encountered
in (e) by transitioning to another Edge server.

V. C O N C L U S I O N A N D F U T U R E W O R K

This work introduces FogROS2-LS a location-independent
ROS2 Framework for latency-sensitive cloud robotics. One
limitation is that the accuracy of latency profiling is affected
by the correlation of the message processing latencies. For
example, H.264 video compression can result in imprecise
latency estimations where some packets represent complete
frames and others contain only the differences from the
preceding frame. In future work, we will model such packet
dependency for robotics application predictability.

V I . A C K N O W L E D G E M E N T

The authors would like to thank Dirk Elias, Philipp
Mundhenk, Arne Hamann, Ralph Lange and Ajay Tanwani
from Bosch Corporate Research, Renningen, for discussions
on Reliable Distributed Systems (RDS) with Cloud. This
work is funded and supported by the large scale collaboration
(LSC) between UC Berkeley and Robert Bosch Research and
Technology Center, North America. Kaiyuan Chen and John
Kubiatowicz are also funded by C3.AI.

R E F E R E N C E S

[1] S. C. Gudi et al., “Fog robotics: An introduction,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2017.



54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

Margin requirements for the other pages
Paper size this page US Letter

[2] J. Ichnowski et al., “Fog robotics algorithms for distributed motion
planning using lambda serverless computing,” in Proc. IEEE Int.
Conf. Robotics and Automation (ICRA), 2020, pp. 4232–4238.

[3] A. K. Tanwani, N. Mor, J. Kubiatowicz, J. E. Gonzalez, and
K. Goldberg, “A fog robotics approach to deep robot learning:
Application to object recognition and grasp planning in surface
decluttering,” in Proc. IEEE Int. Conf. Robotics and Automation
(ICRA), IEEE, 2019, pp. 4559–4566.

[4] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016,
pp. 779–788.

[5] A. Kirillov et al., “Segment anything,” arXiv preprint
arXiv:2304.02643, 2023.

[6] C. Yu et al., “Ds-slam: A semantic visual slam towards dynamic
environments,” in 2018 IEEE/RSJ international conference on
intelligent robots and systems (IROS), IEEE, 2018, pp. 1168–1174.

[7] Z. Wang, S. Wu, W. Xie, M. Chen, and V. A. Prisacariu, “Nerf:
Neural radiance fields without known camera parameters,” arXiv
preprint arXiv:2102.07064, 2021.

[8] J. Kerr, C. M. Kim, K. Goldberg, A. Kanazawa, and M. Tan-
cik, “Lerf: Language embedded radiance fields,” arXiv preprint
arXiv:2303.09553, 2023.

[9] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Aggressive driving with model predictive path integral control,” in
2016 IEEE International Conference on Robotics and Automation
(ICRA), IEEE, 2016, pp. 1433–1440.

[10] A. Brohan et al., “Rt-2: Vision-language-action models transfer web
knowledge to robotic control,” arXiv preprint arXiv:2307.15818,
2023.

[11] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall,
“Robot operating system 2: Design, architecture, and uses in the wild,”
Science Robotics, vol. 7, no. 66, eabm6074, 2022.

[12] H. Ballani and P. Francis, “Towards a global ip anycast service,”
ACM SIGCOMM Computer Communication Review, vol. 35, no. 4,
pp. 301–312, 2005.

[13] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen,
“Learning hand-eye coordination for robotic grasping with deep
learning and large-scale data collection,” The International journal
of robotics research, vol. 37, no. 4-5, pp. 421–436, 2018.

[14] B. Zitkovich et al., “Rt-2: Vision-language-action models transfer web
knowledge to robotic control,” in Proceedings of The 7th Conference
on Robot Learning, J. Tan, M. Toussaint, and K. Darvish, Eds.,
ser. Proceedings of Machine Learning Research, vol. 229, PMLR,
Jun. 2023, pp. 2165–2183.

[15] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research
on cloud robotics and automation,” IEEE Trans. Automation Science
and Engineering, vol. 12, no. 2, pp. 398–409, 2015.

[16] S. Chinchali et al., “Network offloading policies for cloud robotics:
A learning-based approach. arxiv e-prints, page,” arXiv preprint
arXiv:1902.05703, 2019.

[17] N. Tian et al., “A fog robotic system for dynamic visual servoing,” in
2019 International Conference on Robotics and Automation (ICRA),
IEEE, 2019, pp. 1982–1988.

[18] A. K. Tanwani, R. Anand, J. E. Gonzalez, and K. Goldberg, “RILaaS:
Robot inference and learning as a service,” IEEE Robotics &
Automation Letters, vol. 5, no. 3, pp. 4423–4430, 2020.

[19] S. L. K. C. Gudi, S. Ojha, B. Johnston, J. Clark, and M.-A. Williams,
“Fog robotics for efficient, fluent and robust human-robot interaction,”
in 2018 IEEE 17th International Symposium on Network Computing
and Applications (NCA), IEEE, 2018, pp. 1–5.

[20] G. Mohanarajah, D. Hunziker, R. D’Andrea, and M. Waibel,
“Rapyuta: A cloud robotics platform,” IEEE Trans. Automation
Science and Engineering, vol. 12, no. 2, pp. 481–493, 2014.

[21] K. E. Chen et al., “FogROS: An adaptive framework for automating
fog robotics deployment,” in 2021 IEEE 17th International Confer-
ence on Automation Science and Engineering (CASE), IEEE, 2021,
pp. 2035–2042.

[22] J. Ichnowski et al., “FogROS2: An adaptive and extensible plat-
form for cloud and fog robotics using ros 2,” arXiv preprint
arXiv:2205.09778, 2022.

[23] K. Chen et al., “Fogros2-config: A toolkit for choosing server
configuration for cloud robotics,” Proc. IEEE Int. Conf. Robotics
and Automation (ICRA), 2024.

[24] K. Chen, J. Yuan, N. Jha, J. Ichnowski, J. Kubiatowicz, and K.
Goldberg, “FogROS G: Enabling secure, connected and mobile fog
robotics with global addressability,” arXiv preprint arXiv:2210.11691,
2022.

[25] K. Chen et al., “FogROS2-SGC: A ROS2 Cloud Robotics Platform
for Secure Global Connectivity,” in 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), IEEE, 2021,
pp. 2035–2042.

[26] G. Tsirtsis and P. Srisuresh, “Network address translation-protocol
translation (nat-pt),” Tech. Rep., 2000.

[27] B. Sredojev, D. Samardzija, and D. Posarac, “Webrtc technology
overview and signaling solution design and implementation,” in 2015
38th international convention on information and communication
technology, electronics and microelectronics (MIPRO), IEEE, 2015,
pp. 1006–1009.

[28] J. Wang and E. Olson, “Apriltag 2: Efficient and robust fiducial
detection,” in 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IEEE, 2016, pp. 4193–4198.

[29] My AGV Mobile Robot, https://shop.elephantrobotics.
com/products/myagv.


	No margin impositions were found

