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Robot Surgery
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> 2M robot surgeries.
? How many required a
human surgeon?
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“Augmented Dexterity”:
How Robots Can Enhance Surgeon Dexterity

Augmented Dexterity describes systems
where surgical subtasks are controlled by
the robot under the close supervision of the

human surgeon who Is ready to take over at
a moment's notice.

K. Goldberg 2024
https://bit.ly/Augmented-Dexterity-S24
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STITCH: Augmented Dexterity for Suture Throws
Including Thread Coordination and Handoffs

Kush Hari'*, Hansoul Kim'*, Will Panitch'*, Kishore Srinivas', Vincent Schorp'+,
Karthik Dharmarajan®, Shreya Ganti®, Tara Sadjadpour!, Ken Goldberg®

Abstract— We present STITCH: an augmented dexterity su-
turing pipeline for the dVRK surgical robot. STITCH performs
needle insertion, thread sweeping, needle extraction and suture
cinching, needle handover, and needle pose correction, with
failure recovery policies for these actions. We introduce a
novel visual 6D needle pose estimation framework using a
stereo camera pair and an augmented dexterity suturing motion
controller. In the augmented dexterity framework, a surgeon
monitors autonomous subtasks and intervenes when either the
robot or surgeon deems it necessary. We STITCH a wound
phantom and compare its performance against simpler policies,
including a proprioception-only and a no-visual-serviong policy.
In physical experiments, we find that across 15 trials, STITCH
achieves an average of 2.93 sutures without human intervention
and 4.47 sutures with human intervention. See https://
sites.google.com/berkeley.edu/stitch for code and
supplemental materials.

I. INTRODUCTION

Recenl advancements 1n surgical robotics, like Intuilive
Surgical’s da Vinci Robotic Surgical Assistant (RSA), have
gained popularity in operating rooms for their precision and
minimally invasive capabilities. These robots aid surgeons by
cnhancing their range of motion and vision while reducing
palicnt recovery time and complications. One such advance-
ment 1s augmented dexterity, where the RSA assists with
auroical rasks nnder a snroeon’s sunervision. This annronach

Fig. 1. 6 sutures performed by STITCH. Stcp | shows Necedle Inscrtion,
Step 2 shows Needle Extraction, and Step 3 shows Needle Handover with
Posc Correction. Detections of the needle endpoints are shown in the photo
with the needle tip point shown as the blue circle and the needle swage point
shown as the yellow circle. The light green circle represents the estimaled
needle pose.



High Quality sutures:
1) speed healing, 2) reduce risk of infection, and 3) reduce scarring
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High Quality Sutures:

1.0 cm stitch length

0.5am

® \/inim ' 4 i
Jm spacing | / N

® Uniform skin tension ,</

knots on same side U=,

(inferiorly) . _ | " 0.5 cm depth

[1] General Medical Disposable, “Suturing techniques,” https://gmdgroup.com.tr/en/suturing-techniques/, 2019,
Accessed Jul 2023.
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1.0 cm stitch length
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Suture Planning ///
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Given a wound, >/h/
knots on same side R

Compute needle entry and nots B | e
exit points that optimize -y < 9 -
factors and meet constraints '
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PHOI’ \/\/OI’K Needle Motion Planning
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planned
needle
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Desired needle trajectory along Using sequential convex
with entry and exit points- optimization to get needle path?

2] S. Sen, A. Garg, D. V. Gealy, S. McKinley, Y. Jen, and K. Goldberg, “Automating multi-throw multilateral surgical
suturing with a mechanical needle guide and sequential convex optimization,” Proceedings - |IEEE International
Conference on Robotics and Automation, vol. 2016-June, pp. 4178-4185, 2016
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[4]

suture Planning for Linear 2D Wounds

H. Saeidi, H. N. Le, J.
tonomous laparoscop

“AU

— International Conference on Robotics and Automa

D. Opfermann, S. Leonard, A.
IC robotic suturing with a nove

Saeldi et al.4 developed a suture
planning algorithm for linear
wounds and iImplemented
suturing with the Smart Tissue

Autonomous Robot (STAR)

system.
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Surgeom’s ‘Diamond Rule’
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Assumes a linear wound Hne, and linearly decreasing force along
the wound — evenly spaced sutures leads to equal suture forces®
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2D Non-Linear Suture Planning

Given image of a 2D curved wound and centerline of
wound, compute a suture plan that meets criteria and
Minimizes the cost function.

gy e e N~ -

[7] V. Kamat et al., "Automating 2D Suture

Placement,” 2023 |
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A-Part Cost Function

Cost due to Deviations from Ideal Suture Distance:
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SKkin Tension
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Cost Function (cont'd)

Cost due to Deviations from Ideal Closure Force: \“
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2D Physical Experiment: Chicken Skin

SP2DEEF SP2DEEF Surgeon




This Paper: 3D Non-Linear Suture Planning
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Mesh and Spline
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3D Suture Planning Problem

Given 2 stereo images of a wound without branches and
a bounding box around the wound, produce a suture
plan that meets criteria and minimizes the cost function.

Left image

Ny
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Right image

2D wound mask

Segmented point cloud

5

Spline fitting
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' Surface reconstruction
Disparity image ~

3D Suture placement J

Results



otep 1: 3D Image Processing
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otep 1: 3D Image Processing
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Step 1: 3D Surface Estimation

4 '

Disparity Image
(@amount of parallax,
oroxy for depth)

Wound Mask (from
both cameras)



Step 1: 3D Surface Estimation

‘ |

Stereo Pair Surface, generated from points by advancing
point algorithm

Images Disparity Image 3D points

[10] Da TKF, Cohen-Steiner D. Advancing front surface reconstruction. CGAL
2024, https://doc.cgal.org/latest/Advancing front surface reco

Jser anc

Reference Manual; CGAL,

NStructio

n/index.html.
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https://doc.cgal.org/latest/Advancing_front_surface_reconstruction/index.html
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18] L. Lipson, Z. Teed and J. Deng, "RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo
Matching," 2027 International Conference on 3D Vision (3DV), London, United Kingdom, 2021, pp. 218-227, doi:
10.1109/3DV53792.2021.00032.
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otep 2: Gompute VWound Line




Step 2: Meta Segment Anything (SAM)

—Irst application to surgical wound segmentation

m —69—* mask decoder —
image . t T
encoder —
L conv \ I prompt encoder |
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-rance, 2023
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9] A. Kirillov et al., "Segment Anything," IEEE/CVF International Conference on Computer Vision (ICCV),
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Step 3: Fit 3D Spline to Wound Line

-

Disparity image

Segmented point cloud

2D wound mask Spline fitting
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Step 3: 3D Cubic Spline

® Cubic spline in 3D with “knot
poIiNts”

10}

0.5 .|

® Number of kKnots varies with the | |
length of the line o

e Single-pixel wide wound line = 1.
Transform to 3D using RAFT e -
Fach transformed pixel is used 0.5 ;

as a knot in 3D spline

1.0 8
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otep 4: Optimize 3D Suture Points

Surface reconstruction

Segmented point cloud

) 3D Suture placement

Spline fitting
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otep 4: 3D Distance Constrains

Insertion/Extraction points
must not be:

e {00 close together
e OO far apart

| Po.i — P1.ill = Pmin

Hpo,i _pl,iH < ﬁmax

34




otep 4: 3D Cost Functions

O Squared Error from ideal suture
width (gamma)

O Variance In distances between
successive sutures (for center/

insertion/extraction)
O Shear Force : min } cqlg+cili+cywly + Cele +crLs + C5Lg
503+ n—1
o Difference in Closure force S.t. Aminy Amax, 0S50 <+ <1 <1

from 1deal

35



otep 4: Optimize 3D Suture Points

Initially, equally spaced points Mesh and Spline

0.02 0.03 0.04 0.05 0.06

Sequential least squares Lo.1s
(SQLSP) optimizatio Subject i
to constraints o
+0.11
+0.10
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otep 4: Optimize 3D Suture Points

test surface

Move along the spline

FINd nearest neighbors In
3D space

Compute Forces and
adjust points in 3D using
gradients
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Step 4: 3D Mesh Mode

Quickly find all points near a given
ooINnt:

Kd Tree

kd Tree. O(NIogN})

M nearest-neighbors search:
O(MlogN)
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otep 4: Finalize 3D Suture Points

Surface reconstruction

Segmented point cloud

) 3D Suture placement

Spline fitting
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—xperiments

Surface reconstruction

3D Suture placement

Results
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Experiments in Sim (Concave VWound)
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Physical eExperiments

Compare:
1) SP2DEEF algorithm

2) Uniform Spacing
paseline

3) SP3DEEF algorithm
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Physical —Xpernments

(Thumbtacks to indicate p\acement)

-,

Planned 3D Sutures Sutured Wound
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Physical eExperiments

Original 2D Suture Plan Even 3D Suture Plan
Baseline
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Physical eExperiments

3D spline cannot fit to sharp corner:
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—uture VVork

3D Wounds 3D Wounds 3D Wounds with
with corners with branches Variable depth

Laceration Puncture wound

https://doctorlib.info/medical/tintinalli-emergency-medicine/12.html https://www.orthopaedics.com.sg/treatments/orthopaedic-surgeries/
laceration-wound/
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—uture VVork

Surgeon Spline Adjustment

1. surgeon clicks 2
wound endpoints
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—uture VVork

Online Suture Re- Planning Augmented Reality Display
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Automating 3D
Surgical suture Planning
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Contributions:

1) First application of Meta Segment Berkeoley
Anything Model (SAM) to segment a human
wound from an Image.

2) Extend SP2DEEF algorithm to compute
suture plans for 3D non-linear wounds

3) Physical experiments
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