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Abstract— Cloud robotics enables robots to offload complex
computational tasks to cloud servers for performance and
ease of management. However, cloud compute can be costly,
cloud services can suffer occasional downtime, and connectivity
between the robot and cloud can be prone to variations in
network Quality-of-Service (QoS). We present FogROS2-FT
(Fault Tolerant) to mitigate these issues by introducing a
multi-cloud extension that automatically replicates independent
stateless robotic services, routes requests to these replicas, and
directs the first response back. With replication, robots can
still benefit from cloud computations even when a cloud service
provider is down or there is low QoS. Additionally, many
cloud computing providers offer low-cost “spot” computing
instances that may shutdown unpredictably. Normally, these
low-cost instances would be inappropriate for cloud robotics,
but the fault tolerance nature of FogROS2-FT allows them to
be used reliably. We demonstrate FogROS2-FT fault tolerance
capabilities in 3 cloud-robotics scenarios in simulation (visual
object detection, semantic segmentation, motion planning) and
1 physical robot experiment (scan-pick-and-place). Running on
the same hardware specification, FogROS2-FT achieves motion
planning with up to 2.2x cost reduction and up to a 5.53x
reduction on 99 Percentile (P99) long-tail latency. FogROS2-FT
reduces the P99 long-tail latency of object detection and semantic
segmentation by 2.0x and 2.1x, respectively, under network
slowdown and resource contention. Videos and code are available
at https://sites.google.com/view/fogros2-ft.

I . I N T R O D U C T I O N

The complexity of foundational models [1], [2], [3]
and sophisticated robot algorithms [4], [5] exceed most
onboard robot computing capabilities. Cloud robotics provides
shared access to on-demand resources and services with
boosted performance and simplified management, enabling
the deployment of compute-intensive algorithms on low-
cost, mobile robots without powerful on-board hardware,
such as GPU, TPU, and high-performance CPU. In previous
research, we developed FogROS2, which enables unmodified
robotics code in Robot Operating System 2 (ROS2) to
offload heavy computing modules to an independent set
of cloud hardware resources and accelerators. FogROS2
used on-demand servers that guarantee dedicated computing
resources with high uptime (e.g., 99.99 % [6]). However, the
network quality of service (QoS) between robots and the
cloud can vary, and during rare cloud outages, robots lose
all cloud-computing benefits. Additionally, as on-demand
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Fig. 1: FogROS2-FT Overview. (Top) Cloud robotics applications, such as
grasp planning, when deployed on a single cloud server become a single
point of failure. (Bottom) Instead, FogROS2-FT provides a cost-efficient
and fault-tolerant solution that deploys unmodified ROS2 applications to
multiple low-cost cloud servers, making cloud-robotics applications resilient
to individual server termination and network slowdowns.

instances can be expensive, many cloud providers offer spot
VMs1 at a significantly reduced price with the caveat that
they can shut down unpredictably—making them (without
fault tolerance) unsuitable for many robotics applications.
In this work, we introduce FogROS2-FT, a fault-tolerant
extension to FogROS2 [7] that provides robust performance
against variable network QoS, infrastructure unavailability,
and stochasticity of the robotic algorithms, increasing the
reliability and responsiveness of cloud robotics. By adding
redundancy to cloud computation, we enable cloud-robotics
tasks to continue operating effectively despite the following
failures:

(A) Resource Unavailability: Although cloud services have
high uptime and are managed by dedicated experts, outages
can still occur. For example, an AWS outage affected the
availability of the iRobot applications [8]. In addition, spot
VMs may shut down unpredictably.

(B) Resource Oversubscription: The cloud enables flexible
usage of computational resources. For example, one can
oversubscribe to a system by allocating fewer resources than
the sum of resources required by all robots, based on the

1In Google Cloud Platform (GCP) and Microsoft Azure, these are called
Spot Virtual Machines. In Amazon Web Services, these are called Spot
Instances. More generally, they are also known as preemptible or transient
machines.



expectation that robots rarely use all the resources simultane-
ously. Oversubscribing can improve resource utilization, but
if too many robots contend for resources at once, all robots
will experience performance degradation or failures.

(C) Stochastic Algorithmic Latency: Many robotic al-
gorithms demonstrate stochastic timing behavior, such as
asymptotically-optimal rapidly-exploring random tree in
motion planning [9] that relies on random sampling. Large
or foundational models are also affected by the stochasticity
of the operating system scheduling and buffers [10], [11].

Fault tolerance typically demands an in-depth understand-
ing of the algorithm and specific adaptations against faults,
and it involves complex deployment and management pro-
cesses that require extensive engineering expertise. FogROS2-
FT provides fault tolerance for heterogeneous stateless robotic
algorithms without requiring ROS2 application modifications.
It simultaneously dispatches requests to identical services
deployed in multiple cloud data centers and uses the first
response received from the replicated services. This model
significantly increases the probability of getting timely
responses as long as at least one replica and network remains
operational and responsive. We design a replication-aware
routing network that allows resilient and location independent
connectivity that persists even if the service is restarted on a
different machine.

To reduce the cost of launching independent replicated
services, FogROS2-FT can deploy on spot VMs. With
FogROS2-FT, even time-sensitive robotics tasks can be
executed on those cost-effective servers with per-request
fault tolerant characteristics, enjoying the benefits of lower
expenses without suffering from the drawbacks of unplanned
server shutdown. FogROS2-FT resiliently manages a pool of
spot VMs across multiple cloud and regions, and recreates a
new spot VM whenever a replica gets terminated.

We evaluate FogROS2-FT on 4 cloud-robotics applications:
object detection with YOLOv8 [12], semantic segmentation
with Segment Anything (SAM) [2], motion planning with
Motion Planning Templates (MPT) [9], and a physical pick-
and-place task with a UR10e. In experiments, FogROS2-FT
reduces latency by up to 1.16x in motion planning, including
a 5.53x reduction on 99 Percentile (P99), a metric for long-tail
latency faults; and FogROS2-FT reduces average inference
latency by 2.1x and P99 latency of object detection by 3.9x
under network slowdown. FogROS2-FT improves SAM’s P99
latency by 1.96x when compute resources is contended.

This paper makes four contributions: (1) an open-source
fault-tolerant extension to FogROS2 that enables robots to
use replicated, independent cloud resources across different
clouds for capacity and availability and stay available as
long as one of the replicas and subnetworks is available; (2)
cost-effective deployment using spot VMs; (3) cost, fault
tolerance, and latency data from an experimental evaluation
of FogROS2-FT on 3 simulated cloud robotics applications;
(4) experimental evaluation with a physical robot performing
a scan-pick-and-place task.

I I . R E L AT E D W O R K

Cloud and Fog Robotics: The use of cloud computing re-
sources for robots, conceptualized as cloud robotics [13], has
become increasingly relevant as large models (e.g., NeRF [14],
SAM [2] and LERF [3] for visual perception) and other
computationally demanding algorithms (e.g., MPPI for path
planning) are integrated in robotic applications. Following
the Fog Computing paradigm [15], Fog Robotics [16] utilizes
edge resources to improve performance, of cloud computing
for a multitude of robotics applications, including grasp
planning [5], motion planning [4], visual servoing [17], and
human-robot interaction [18]. In the FogROS2 series of
work, we address several concerns of using cloud compute
for robotics. FogROS2 [19] is a cloud robotics framework
officially supported by ROS2 [20]. FogROS2 focused on
optimizing for a single cloud and robot using a Virtual Private
Network (VPN). Extensions of this work have addressed
the questions of connectivity, latency, and cost. FogROS2-
SGC (Secure and Global Connectivity) [21] enables secure
communication between distributed ROS2 robot nodes.

Multi-Cloud Robotics: FogROS2 is the first multi-cloud
robotics that offloads robotics applications to multiple cloud
service providers. FogROS2-Config [22] extends FogROS2
to navigate available cloud machine selection that meets
user-specified time and cost per request. FogROS2-FT uses
multi-cloud Spot VMs to reduce the cost of the deployment.
Spot VMs are one such cost-saving purchasing option offered
by major cloud service providers that are up to a 90 %
discount off the standard on-demand pricing, because they
can be preempted2 unpredictably [23]. This creates trade-off
between the reduced price of spot VMs and having to build
an infrastructure handling shutdowns and restarts [24]. The
rates of preemption are highly variable across regions and
instance types, from 3 % to over 20 % chance of preemption
per day. Spot VM prices are also variable, and can fluctuate
over the course of a day. Extensive research has been done
to predict spot pricing using statistical models [25], [26] and
learning methods [27], [28]. Due to their unreliable nature,
spot VMs were not considered as part of the machine selection
in FogROS2 and FogROS2-Config.

Fault Tolerance for Latency Sensitive Applications: A
fault tolerant system is typically based on failover, dynami-
cally switching to one of the machines upon failure of one
machine, and redundancy by duplicated machines ensuring
operation in case of a failure on one system. FogROS2-
LS (Latency Sensitive) [29] implements failover strategy
by enabling robots to flexibly connect with one of many
servers, but the system takes time to discover and recover
from faults by switching to another server that meets latency
requirements. Lee et al. [30] enables fault tolerance on
spot VMs for deep learning by actively checkpointing and
recovering from the failure. On redundancy, Schafhalter et al.
[31] improves the responsiveness of autonomous vehicles by
performing operations on both vehicle and cloud. On fault
tolerance of spot VMs, Voorsluys et al. [32], Poola et al.

2Preempted, shut down and interrupted are used interchangeably.



[33], and Neto et al. [34] demonstrate spot instances can be
used as a cost-efficient setup. However, they focus on the
cost optimization on a single server. Ali-Eldin et al. [35]
uses redundancy of spot VMs on web services. However,
fault tolerance of continuous and latency-sensitive robotic
operations is understudied. With FogROS2-FT, off-the-shelf
robotics applications can run in fault-tolerant environment
without the awareness of the robotic application developers.

I I I . S Y S T E M A S S U M P T I O N S A N D F E AT U R E S

A. System Assumptions

We assume the application can be partitioned as a robot that
sends sensor data as requests and awaits control instructions
as response from a service that encapsulates the algorithm. We
assume that all servers, networks, and faults are independent.
The services need to be stateless to achieve fault tolerance
transparently, or applications needs to use well-defined
interfaces from FogROS2-FT to make the states consistent.

We assume the application is implemented in ROS2, the
de-facto platform for building robotics applications. In ROS2,
the computational units (client and service) are abstracted into
ROS2 nodes. FogROS2-FT assumes the nodes are connected
by ROS2 service communication model [36].

B. Fault Tolerance Properties

FogROS2-FT achieves fault tolerance with the following
properties:

1) Zero Downtime at Faults. FogROS2-FT enables fine-
grained request-level fault tolerance that ensures a
request can be fulfilled as long as at least one replica
and network remains operational.

2) Algorithm-Agnostic. FogROS2-FT operates indepen-
dently of the specific algorithms used in applications as
long as it is stateless.

3) Failure Cause-Agnostic. FogROS2-FT does not need to
be tailored to specific failure, and remains functional as
long as at least one service is available and connected.

4) Hardware-Agnostic. FogROS2-FT is agnostic to het-
erogeneous hardware resource options provided by the
cloud, supporting simultaneous use of different resource
types and fault tolerance level.

5) Multi-cloud, Multi-region. Since the failure may occur
to a specific region or cloud provider, FogROS2-FT, as
part of the Sky Computing paradigm [37] [38], offers
a unified interface for interacting with various cloud
service providers and uses cloud computing resources
across different clouds simultaneously.

C. FogROS2-FT Failure Qualification

Multiple cloud servers can provide fault tolerance to region
or server-specific compute or network failures. We assume
the robot has a persistent and stable connection to at least
one of the cloud servers.

The probability of a VM failing at any moment in time is

PVMi(failure) =
recovery timeVMi

uptimeVMi
+ recovery timeVMi

,

and the probability of a system failure with N spot VMs is

Psystem(failure) = ∏
i∈N

PVMi(failure).

Given a desired maximum failure rate for the system and the
failure rate for all VMs used, we can calculate the required
number of VM replicas as

N =

⌈
logPVM(failure)

logPsystem(failure)

⌉
.

To reduce the probability of failure, one can either increase
the number of replicas, or use a combination of spot and on-
demand instances. For example, a spot VM is preempted every
15 hours on average from experiments by Skypilot paper [38]
and re-creating and initiating a new instance with FogROS2
can take up to 20-minute downtime [19], the probability of
simultaneous preemptions with two spot VMs is less than
0.05 %, fulfilling the Service Level Agreement of AWS on
non-spot VMs [6].

D. New Features

FogROS2-FT is distinguished from previous work with the
following features:

1) Cost-effectiveness. FogROS2-FT can provide signifi-
cantly lower cost by using spot VMs.

2) Scalability FogROS2-FT allows robots to launch a
adjustable number of machines to reduce the probability
that all the replica service deployments are not available.

3) Flexibility FogROS2-FT is flexible to the choice of
available hardware resources. For example, one can mix
low-specification on-demand cloud machines for up-time
with high-specification spot VMs for speed.

4) Adaptive and Resilient recovery FogROS2-FT auto-
matically recovers from service interruptions, preserving
the intended level of fault tolerance automatically.

I V. F O G RO S 2 - F T D E S I G N

This section describes how FogROS2-FT (1) achieves
transparent fault tolerance for ROS2 applications and (2)
resiliently maintains a pool of cost-effective cloud servers.

A. Overview

Figure 2 shows an overview of how FogROS2-FT achieves
both fault tolerance and cost effectiveness. FogROS2-FT sends
requests to multiple replicated spot VMs, and routes the first
response back to the robot. It resiliently manages spot VMs
to recover from unpredictable terminations.

Interface. A user interfaces to FogROS2-FT is through
extensions to the ROS2 launch system. The interface is
identical to standard ROS2 launch scripts, other than speci-
fying the hardware requirements and desired fault tolerance
level. Listing 1 shows an example of a launch script for
fault tolerant grasp planning service with FogROS2-FT. We
embrace the Sky [37] multi-cloud paradigm that user can
directly specify generic hardware requirements instead of
specific cloud machine types, which are compatible across
heterogeneous cloud service providers.



Fig. 2: System Overview of FogROS2-FT FogROS2-FT transparently
proxies ROS2 communication. It sends requests to multiple replicated spot
VMs, and routes the first response back to the robot. FogROS2-FT manages
spot VMs to resiliently recover from unpredictable terminations.

1 def generate_launch_description():
2 # Define ROS2 nodes on cloud
3 grasp_planner_node = Node(
4 package="grasp", executable="planner")
5

6 spec_1 = CloudMachine(
7 region = "us-west-2",
8 hardware = "cpu:16", # 16 cores CPU
9 )

10 spec_2 = SpotMachine(
11 region = "us-west-1",
12 hardware = "T4", # Nvidia T4 GPU # use Spot VM
13 )
14

15 # launch fault tolerant grasp_planner node
16 # on the heterogenous regions and hardware
17 FogCuster(
18 cloud_nodes = [grasp_planner_node],
19 deployments = [spec_1, spec_2])
20

21 return LaunchDescription([
22 Node(package="grasp", executable="client")
23 ])

Listing 1: FogROS2-FT Launch Script Example. This example launches
two nodes, a grasp motion client node that runs locally with standard ROS2
interface, and a fault tolerant grasp planning node with FogROS2-FT. It
allow users to specify the cloud ROS2 nodes and desired fault tolerance
level and hardware with mixed on-demand and spot VMs.

B. Application-Agnostic Fault Tolerance through Replication

To launch (unmodified) ROS2 nodes in the cloud,
FogROS2-FT is a multi-cloud launcher that facilitates cloud
initialization and a replication-aware proxy that connects
ROS2 robot client and cloud service with a global fault-
tolerant network.

The multi-cloud launcher initializes cloud servers with a
ROS2 environment, and provisions secure communication
through FogROS2-FT proxies. To local ROS2 network, the
proxy serves the requests as local ROS2 service and interacts
with nodes (e.g., sensors and controllers) on the robot as if
the ROS2 service nodes on the cloud were all on the same
local computer. On a new request, the proxy of FogROS2-FT
sends the request to all replicated service nodes. When the
proxy receives responses from the replicas, it passes only the
first response to the robot. This is agnostic to applications
and causes of the fault. As long as one response comes back
to the robot, the request is fulfilled. To the cloud server, the
proxy receives the request from the network, and invokes the
ROS2 service on the cloud.

Multi-Cloud Fault Tolerant Launching Process. Ini-
tializing fault tolerant cloud robotics includes the following
steps (1) The robot provisions multiple Cloud servers across
different regions and data centers. FogROS2-FT can auto-
matically select the region based on network latency and
cloud operating cost. The user can override the selection with
configuration. FogROS2-FT uses SkyPilot [38] to interface
with heterogeneous cloud service providers. (2) The robot
initializes all the cloud servers with ROS2 and the robot
service application dependencies. FogROS2 [7] details the
initialization procedure. (3) Robot and all Cloud servers
generate and share communication security credentials (4)
Robot and all Cloud servers run FogROS2-FT proxy (5) All
proxies discover each other automatically, establish global and
resilient connectivity with the generated security credentials
and desired topology.

By default, all robotics services have at least two replicas
at different cloud data centers. Critical services can use more
replicas and adapt based on changing conditions (such as
time of the day, budget). Without terminating the existing
cluster, one can use Command Line Interface (CLI) to scale
up and down the number of replicas dynamically:

ros2 fog scale [up/down] [args]

Replication-Aware Fault Tolerant Connectivity. Figure
3 shows the workflow of FogROS2-FT on handling requests
with fault tolerance. A ROS2 application sends a request via
the local ROS2 network, where the robot’s proxy captures,
extracts its serialized content a unique identifier from the
ROS2 middleware layer (rmw). The proxy stores the identifier
with a handle and sends the request to the cloud. The handle
incorporates a callback function called on response arrival
and on timeout. The cloud proxy invokes the corresponding
cloud-based ROS2 service to compute and send the response
back. The robot’s proxy verifies the response with the unique
identifier, then either marks the request as completed and
sends back to the robot, or discards as a duplicate.

C. Resilient and Flexible Connectivity

The fault tolerance workflow of FogROS2-FT is established
on a global peer-to-peer network, a fabric formed by inter-
connected proxies. The connections are resilient to service
changes and flexible to various network topologies.

When a cloud machine is interrupted and rebooted,
FogROS2-FT launches another cloud virtual machine. The
launched cloud machine is typically different cloud machine
with changed network connectivity information (such as IP
address). The connections between proxies should be resilient
to such interruption that even if the server gets interrupted
and relaunched at a different physical machine, it can still
maintain its connection to the robot.

FogROS2-FT achieves this by assigning a globally unique
identifier to every peer-to-peer connection between proxies.
This identifier can be generated deterministically between the
proxies that no other ROS2 service can produce the same iden-
tifier. FogROS2-SGC [21] provides details about the identifier
construction process and guarantees. In this work, we extend



Fig. 3: Flow diagram of FogROS2-FT on handling new requests The
FogROS2-FT replication-aware proxy handles ROS2 grasp planning request
with fault tolerance guarantees with multiple steps. (1) The ROS2 application
sends a request on the local ROS2 network. (2) The proxy running on the
robot receives the request and extracts the content and a unique identifier
from ROS2 middleware (rmw) layer buffer. (3) The proxy registers the
unique ID from rmw with the handle, which includes a callback function
if the response of the request arrives and a callback function for timeout.
(4) The proxy securely sends the request to proxies running on replicated
Cloud machines. There can be multiple proxy hops between the robot and
the server that hosts the desired ROS2 service. The request message carries
the unique identifier and the proxy adds an entry in the registry table. (5)
The proxy running on the cloud converts the message to a standard ROS2
request message, and invokes the ROS2 service on the cloud and gets the
response. (6) The proxy on the cloud sends the response back to the proxy
on the robot. (7.A) The robot checks if it handled the response with the
unique identifier; (7.B On the duplicated responses) The proxy drops the
response if it was already handled. (7.C On timeout) The proxy calls the
timeout handler (such as returns with empty response) and cleans up the
registry table. (8) The robot sends the response to the application on the
robot through standard ROS2 protocol.

the identifier of FogROS2-SGC to network connections, such
that even if the original machine is interrupted and restarted
at a different place, it can still deterministically generate the
identifier and resume the connectivity. FogROS2-FT connects
the proxies on the robot and on the cloud with the same
globally unique identifier by a metadata server. The metadata
server exchanges network information, monitors the status of
the connections, and cleans up the connectivity information
if one of the proxy reports its peer as disconnected. The
metadata server can be hosted on lightweight, low-bandwidth
and accessible cloud servers. The server only facilitates
connectivity, and no application data flows through the server,
so a failure of the server does not lead to a system failure.

Flexible and Scalable Topology For Bandwidth-Limited
Robots. We consider mobile robots with low network
bandwidth that may be bottlenecked if sending the request to
multiple cloud servers. In this case, we need an intermediate
server with higher bandwidth as gateway to forward the
requests to other proxies. The server can be on the cloud
or edge. The transport of FogROS2-FT is not constrained
to having the client and server be directly connected. In
FogROS2-FT, the proxy can be in a tree-like structure, where

Fig. 4: Flexible Topology for Different Bandwidth of Robots (a) Since
FogROS2-FT sends replicated requests to multiple cloud machines, it
demands more network bandwidth than conventional cloud-robotics de-
ployments. (b) FogROS2-FT allows flexible topology so that low-bandwidth
robot can leverage cloud machines with higher bandwidth to forward to
replicated services. One can either use dedicated gateway machine (left) or
existing compute servers (right).

each edge the tree connects between an intermediate hop and
the proxy. The proxy finds and establishes connections with
its peers by flattening the tree. Figure 4 (b) shows two possible
topology examples, which one can launch a lightweight
gateway server to facilitate the message replication, or directly
use a proxy on the compute service node.

D. Resilient and Cost-Efficient Spot VMs

FogROS2-FT can use spot VMs to reduce the cost of the
replicated cloud server deployment. Since spot VMs can be
up 90 % lower cost than their equivalent on-demand VMs,
running two spot VMs at the same time can still enjoy as
much as 80 % cost reduction. Earlier studies [39] show a
bioinformatics task with 24 spot VMs on Google Cloud
Platform experiences a preemption every 36 minutes on
average. Because of the fault tolerance extension of FogROS2,
we are able to guarantee per-request availability that as long as
there is one spot VM not preempted and available to serve the
request. FogROS2-FT launches and manages spot VMs across
multiple cloud service providers and regions. FogROS2-FT
regularly monitors the status of the spot VMs. When a spot
VM is interrupted, FogROS2-FT re-launch the service node
on a new spot VM and re-establishes connectivity.

V. E X P E R I M E N T S

A. Setup

Without modifying the application code, we apply
FogROS2-FT to three cloud robotics applications: visual
object detection with YOLOv8 [12], Semantic Segmentation
with Segment Anything [2] and motion planning with Motion
Planning Templates (MPT) [9]. We use SkyPilot [38] to select
servers given a hardware specification. For all the experiments,
we use Amazon Web Services (AWS) spot VMs with two
replicas in different regions, us-west-1 (California) and us-
west-2 (Oregon). The workstation connects with spot servers
with Ethernet connection.

Metrics. We compare FogROS2-FT with baseline single-
server deployment by average latency collected by 100 trials



Server Single Server FogROS2-FT (USD per Hour)
Application Core (USD per Hour) On-Demand Spot VM

YOLO 16 0.40 (1.17x) 0.80 (2.34x) 0.34 (1x)
SAM 4∗ 0.53 (1.21x) 1.06 (2.42x) 0.44 (1x)
MPT-Home 32 1.79 (1.05x) 3.58 (2.10x) 1.69 (1x)
MPT-Cubicles 32 1.79 (1.05x) 3.58 (2.10x) 1.69 (1x)
MPT-TwistyCool 64 3.58 (2.13x) 7.16 (4.26x) 1.68 (1x)
Pick-Scan-Place 16 0.40 (1.17x) 0.80 (2.34x) 0.34 (1x)

TABLE I: FogROS2-FT hourly cost (USD per Hour) comparison to a
Single-Server (one on-demand cloud machine) FogROS2-FT can use two
on-demand machines deployment or spot VMs. In SAM, we use Nvidia T4
GPU accelerator for the inference. FogROS2-FT is cheaper to run 2 spot
VMs as opposed to a single server deployment up to 2.13x.
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Fig. 5: FogROS2-FT Latency on Motion Planning Template We tested
FogROS2-FT on 3 different motion planning environments (columns (a),
(b), and (c)). Due to the stochastic nature of the algorithm, we aggregated
results for each scenario and server configuration over 100 trials with a 100 s
timeout. The (top row) shows the frequency histogram for the scenario when
run with Single-Server (in blue). The (middle row) shows the frequency
histogram for the scenarios when run on 2 servers with FogROS2-FT (in
orange). With all scenarios, the shift left of FogROS2-FT histograms (in
orange) relative to their corresponding single-server histograms (in blue)
indicates improved latency performance when running on replicated servers.
The (bottom row) compares the cumulative distribution functions (CDF)
for single-server (in blue) and two servers (in orange). The two-server CDF
is left relative to the single-server CDF indicating an overall improved
performance with lower average latency for all scenarios.

for motion planning and 300 trials for robot vision tasks. We
quantify long-tail anomalous latency faults with 99 Percentile
(P99) latency, the runs with the top 1 % latency.

Cloud Cost Table I shows the US$ per hour cost of
FogROS2-FT compared to typical cloud robotics single-server
setup. With Spot VMs, FogROS2-FT is up to 2.13x cheaper
than conventional single-server cloud robotics setup.

B. Case Study: Parallel Motion Planning

We perform a latency analysis of FogROS2-FT for parallel
motion planning tasks on 3 different scenarios of varying
complexity provided by Open Motion Planning Library
(OMPL) [40]. Given a robot’s initial state and goal state,
the motion planner computes the waypoints required to move
the robot to the goal while avoiding the obstacles. The
motion planning algorithms we test are iterative optimization
problems with stochastic solve times.

Latency Analysis We compare the latency probability

Fig. 6: FogROS2-FT on Semantic Segmentation with SAM under Faults
(F) by Compute Resource Oversubscription FogROS2-FT improves 30 %
of the long-tail P99 latency for SAM. As cloud GPU resources are typically
oversubscribed and shared by multiple concurrent clients, we emulate such
resource contention by running another periodic and concurrent client that
alternates to send requests to FogROS2-FT server. FogROS2-FT significantly
reduces the long-tail latency caused by the resource contention by 1.96x.

Fig. 7: FogROS2-FT on Object Detection with YOLOv8 under Faults (F)
by Regional Network Slowdown We use FogROS2-FT to launch a multi-
cloud cluster that includes us-west-1 (California) and us-west-2 (Oregon).
FogROS2-FT and single-server deployments demonstrates similar latency
under good network conditions, as the additional latency of sending to
another replicated service is amortized FogROS2-FT using the first response.
To simulate network congestion that can occur when a robot has trouble
connecting to a specific data center, we introduce 100 ms latency on all
our servers in us-west-1 (labeled with (F) for ‘fault’). With the network
slowdown, FogROS2-FT is 2.1x faster on average than non-fault tolerant
deployment, and 3.9x faster on P99 latency.

between single-server and FogROS2-FT with 2 servers in Fig.
5. The results for the motion planning latency analysis are
summarized in Figure 5. For all 3 scenarios, FogROS2-FT
reduces average latency by up to 1.22x on Cubicles. FogROS2-
FT significantly mitigates anomalous long and randomized
latency by 1.42x (TwistyCool) and 5.53x (Cubicles) on P99
long-tail latency, because the probability of simultaneous
anomalous high latency is rare.

C. Case Study: Robot Vision with YOLOv8 and SAM

We evaluate FogROS2-FT with SAM and YOLOv8. SAM
is a computationally expensive algorithm that requires long
computational time even with GPU. The result in Fig. 6
(Single-Server) shows the latency of running SAM on a
typical setup with one cloud server, SAM shows a long-
tail and significant P99 latency. FogROS2-FT improves the
P99 latency by 1.3x by selecting the first response from the
duplicated services. Compared to SAM, YOLO has lower
inference latency, thus more network-intensive. In this case,
FogROS2-FT demonstrates similar latency as Single-Server
deployment for the tradeoff that FogROS2-FT consumes more
network bandwidth but the additional latency is amortized
by more stable response time.



Fig. 8: Physical Setup and System Diagram. (Left) In the scan-pick-and-
place robotic task, the goal is to move an object from one workspace to
a randomly generated location on the other workspace. We repeat the task
(from left to right, from right to left) for hours to show the continuity and
robustness of FogROS2-FT in a physical robot system. (Right) The system
diagram has two spot VMs providing Apriltag localization services to a
UR10e robot with a RealSense Camera mounted on its wrist. The robot and
camera connect to an edge computer that runs a robot motion planner and a
FogROS2-FT proxy to connect to the replicated cloud services.

Faults at Compute Resource Oversubscription We eval-
uate FogROS2-FT against the faults of resource contention
if many robots are contending on few resources, where one
may choose to run multiple services on the same physical
machine. By comparing faults (F) between Single-Server (F)
and FogROS2-FT (F) in Fig. 6, FogROS2-FT reduces the
latency by 1.31x and long-tail P99 latency by 1.96x.

Faults at Regional Network Slowdown. Sometimes robot
may experience slowdown when connecting to a specific cloud
data center. This can be caused by a periodic and regional
network congestion or physical location. By comparing faults
(F) between Single-Server (F) and FogROS2-FT (F) in Fig. 7,
FogROS2-FT reduces the latency by 2.1x and long-tail P99
latency by 3.9x.

D. Case Study: Physical Scan-Pick-and-Place

We evaluate FogROS2-FT with cloud-based scan-pick-and-
place with a fundamental physical robotic skill for many
robot tasks, such as random bin picking, sorting, kitting, and
conveyor belt pick-n-place. By offloading visual perception
services, FogROS2-FT improves the responsiveness and
reliability in spite of faults.

Experiment Setup Fig. 8 shows the physical setup of the
Scan-Pick-and-Place evaluation. The Universal Robots arm
(UR10e) is mounted with an Intel RealSense D435i on the
wrist. We use a suction gripper to grasp a plastic CD player
marked with an Apriltag. The system executes a cyclical
procedure that begins with the robot moving to a predefined
joint position. We implement a perception ROS2 service that
uses Apriltag [41] for pose estimation. The ROS2 service
takes in 640x480 resolution image frames and returns a 6D
pose of the target, and the robot picking motion is generated
and executed with the MoveIt2 motion planning tool on the
edge computer, completing the feedback loop. The robot arm
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Fig. 9: FogROS2-FT on Physical Fault Tolerant Pick-Scan-Place (A)
FogROS2-FT achieves reliable latency by choosing the first response with
two active servers (B) We manually terminate one spot VM to emulate a fault,
and FogROS2-FT uses the responses from spot VM #2. (C) FogROS2-FT
automatically recovers spot VM #1 from failure by re-initializing user’s
environment and connectivity (D) We terminated spot VM #2 to emulate spot
VM preemption (E) FogROS2-FT recovers and uses responses from both
servers. The recovery downtime can be improved by tools from FogROS2 [7].

alternate to pick-and-place a box between the left section and
the right section of a designated platform.

Latency Analysis We conducted the scan-pick-and-place
repeatedly and manually interrupt the spot VMs to demon-
strate the robustness of the system. Fig. 9 shows the latency
timeline of FogROS2-FT on Physical Fault Tolerant Pick-
Scan-Place. We manually terminated one of the two spot
instances (scenario B and D). There are two takeaways: (1)
FogROS2-FT can achieve reliable latency by choosing the
first response with two active servers (2) FogROS2-FT can
recover from server failures, such as termination. As long as
one of the services is available and responsive, it can provide
continuous operation for latency-sensitive applications.

V I . C O N C L U S I O N

In this work, we explore concurrent execution across
identical and stateless service deployments on different cloud
machines with FogROS2-FT, and use the first received
response to achieve the tolerance against independent faults.
Evaluation shows FogROS2-FT can reduce the long-tail
latency by up to 5.53 times. It can be deployed on cost-
efficient spot VMs that the fault tolerant system can be up
to 2.1x cheaper than conventional cloud robotics setup.

In future work, we will use multi-path connection, for
example, having mobile robot to use 5G cellular connection,
Wi-Fi and Ethernet connection simultaneously to avoid
failures on single network connection. This resolves the
assumption of FogROS2-FT that servers and faults to be
independent and prevents the same network link between
robot and cloud to be the single point of failure.
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