© © N o o A~ W N

Eye, Robot: Learning Hand-Eye Coordination
with Reinforcement Learning

Anonymous Author(s)
Affiliation
Address

email

Figure 1: EyeRobot. We present a robotic system with an active eye, where the behavior of looking
emerges from the need to act. A foveated mechanical eye, inspired by biological vision, is trained
via reinforcement learning in a novel real-to-sim BC-RL loop. Shown here is a long-horizon pick-
and-place task involving a towel and a bucket—neither visible in the initial view. The robot looks for
the towel, grasps it, then searches for the bucket to complete the task. This hand-eye coordination
emerges purely from the task reward without any gaze demonstration.

“We perceive in order to act and we act in order to perceive.”  — JJ Gibson

Abstract: Humans do not passively observe the visual world—we actively look
in order to act. Motivated by this principle, we introduce EyeRobot, a robotic sys-
tem with gaze behavior that emerges from the need to complete real-world tasks.
We develop a mechanical eyeball that can freely rotate to observe its surroundings
and train a gaze policy to control it using reinforcement learning. We accomplish
this by introducing a BC-RL loop, which is trained using teleoperated demonstra-
tions and eye gaze actions that can be simulated by sampling from 360° video.
The hand (BC) agent is trained from rendered eye observations, and the eye (RL)
agent is rewarded when the hand produces correct actions. In this way, hand-eye
coordination emerges as the eye looks towards regions which allow the hand to
complete the task. We evaluate EyeRobot on five large workspace manipulation
tasks and compare performance to two common camera setups: wrist and exter-
nal cameras. Our experiments suggest EyeRobot exhibits hand-eye coordination
which effectively facilitates action such as visual search or target switching, which
enable manipulation across large workspaces.

Keywords: Active Vision, Reinforcement Learning, Behavior Cloning, Manipu-
lation
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1 Introduction

Have you had water recently? Take a moment to reach for the nearest cup. As you do, your eyes
move first—scanning the table, darting from region to region to locate the cup. Once it’s in sight,
your hand follows. This tight coupling between attention and eye movements is not incidental; it
reflects a fundamental constraint of the human visual system. We are not built to perceive everything
at once. As a result, we must look around—and in this sense, vision can be understood as a form
of search. But what drives the search? The need to act—to accomplish something in the world.
Whether gathering information about task-relevant properties or guiding the execution of a precise
action, we look because we have something to do.

In this work, we present a robotic system where the same principle—looking to enable action—
emerges naturally from a desired real world task without the need for gaze demonstrations, im-
plemented on a mechanical eyeball that can freely rotate to observe its surroundings. The core
challenge is how to train such a visual agent within the constraints of the physical world? To address
this, we introduce a BC-RL loop enabled by a 360 camera-based real-to-sim environment. This
does not require any gaze demonstrations; instead, hand-eye coordinate emerges solely from task
supervision.

To specify what “action” we desire from the system, we build on recent advances in policy learning
from behavior cloning [1]. We augment existing teleoperation systems to collect synchronized 360°
video and robot trajectory data, creating an EyeGym environment that enables replay of demon-
strations with renderings from simulated eyeball viewpoints. Equipped with this environment, we
propose a BC-RL algorithm for training an RL eye policy with a task-based reward, which samples
rollouts from the current eye agent to use as observations to supervise a behavior cloning agent. The
accuracy of these action predictions are cyclically used as rewards for the eye agent (Fig. 2). As
these agents co-train, the eye thus learns to look around to optimize the performance of the behavior
cloning agent—search emerges from the need to act.

Inspired by nature’s solution, we design a Foveal Robot Transformer (FoRT) architecture which pro-
cesses visual input in a foveated manner: peripheral vision provides broad, low-resolution coverage
of the visual field, while foveal vision offers high-resolution input over a restricted area. Our ex-
periments show this multi-resolution architecture results in enhanced fixation during task execution,
which can improve downstream performance. In addition, we find that pretraining the eye policy
on visual search task slightly improves manipulation performance and convergence speed, though
hand-eye coordination with search behavior still emerges even without it. Figure 1 illustrates an
example of behavior which emerges in EyeRobot to accomplish a long-horizon pick-and-place task
involving a towel and a bucket—neither of which is visible in the initial camera view. The robot
begins by scanning the table to locate the towel. After identifying it, the robot picks it up, then shifts
its gaze to find the bucket, and finally places the towel inside, all with a single monocular ego-view.

Our experiments evaluate EyeRobot on 5 large-workspace manipulation tasks, involving objects on
a 180° panoramic workspace surrounding the arm. Across these tasks we observe a number of emer-
gent behaviors not explicitly trained for—switching from one target to another depending on task
stage, long-range search, and independently coordinated hand-eye movements. We find EyeRobot
enables promising performance on a variety of large-workspace pick-and-place and servoing tasks
with a single egocentric active camera, a physical setup more practically suited to mobile deploy-
ment than external cameras. Nevertheless, we compare to external mounted camera baseline, and
find that EyeRobot outperforms them, likely due to the limited resolution of the zoomed-out per-
spective. We also compare with a wrist camera, which performs well when objects are in-view but
struggles in a large workspace setup that requires search.

2 Related Work

Active Vision Active perception systems physically move sensors to not only see, but to
look [2, 3, 4, 5]. This arises naturally from physical constraints faced by embodied agents, which
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Figure 2: EyeRobot framework. Left: Physical hardware setup. We develop a mechanical eyeball
with two degrees of freedom, mounted on a high-speed gimbal and equipped with a fisheye lens and
global shutter. Right: The eye policy is trained via a BC-RL loop.

have only partial observations of the world at any point in time. The key insight of active vision is
that actuation lets agents shape the utility of these observations to better achieve their goals. Existing
systems primarily use active vision to maximize information gain for visual tasks: examples include
tracking [6, 7], search [8, 9, 10], observation completion [11], and view selection for 3D reconstruc-
tion [12, 13, 14, 15] using voxel [16], surfel [17], or point cloud [18] representations. Other works
couple active sensing setups with robot manipulators and evaluate systems in terms of downstream
task performance: this includes improvements in semantic understanding [19], as well as compu-
tational efficiency [20] and occlusion robustness [21] for robot manipulation. Like these systems,
EyeRobot also studies active vision for robot manipulation. Instead of relying on heuristics [19]
or camera action demonstrations [20, 21], however, EyeRobot proposes to learn optimal eye gaze
policies directly with reinforcement learning; we learn where to look in order to act.

Behavior Cloning Behavior cloning (BC) [22, 23, 24, 25] is the dominant paradigm for teaching
robots manipulation skills. BC is advantageous because it does not require hand-designed behaviors,
costs, and rewards—instead, BC policies are simply trained to imitate human demonstrations. Prior
work has shown how this can enable new capabilities in mobile [26, 27], bimanual [1, 28, 29, 30],
and language-conditioned [31, 32, 33, 34] robot manipulation. Policies of this form can also be
implemented using a diverse range of architectures, including energy-based [35], diffusion [33], and
autoregressive [36, 34]. In EyeRobot, we adopt a similar imitation-based system for manipulation
in large workspaces. In contrast to prior systems that solely focus on learning from demonstration,
however, EyeRobot’s BC-RL training shows how behavior cloning objectives for robot actions can
(i) be optimized jointly with an eye gaze reinforcement learning objective and (ii) used as a reward
itself for reinforcement learning.

Biology-Inspired Machine Perception Many computer vision systems draw inspiration from
biology to improve efficiency, adaptability, and performance. For example, simple stereo cam-
eras [37, 38, 39] mimic the binocular vision of animals to support depth perception, while event
cameras [40, 41, 42] mimic retinal spikes to enable low-latency perception. Foveated systems emu-
late the resource-rational nonuniformity of the retina, using either specialized hardware [43, 44, 45]
or learned neural mechanisms [46, 47]. Beyond sensing, gaze control has been modeled after ocu-
lomotor behaviors like smooth pursuit and saccades [48], and implemented in hybrid pipelines that
combine peripheral detection with foveal tracking [49]. EyeRobot builds on the same principles as
these prior works, drawing on the benefits of foveation and gaze control. However, its implementa-
tion differs significantly: rather than rely on specialized sensors or hardcoded behaviors, we mount a
standard RGB camera on a high-speed gimbal, apply foveation using a multi-resolution transformer,
and learn a gaze policy via reinforcement learning.

3 Approach

EyeRobot trains gaze policies for manipulation using reinforcement learning. We conduct experi-
ments using a URSe robot arm with a gimbal-mounted camera mounted rigidly to the base of the
robot. To train gaze policies for hand-eye coordination, we propose (i) EyeGym, an environment
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Figure 3: Learning to Look with EyeGym. EyeGym enables training policies on 360° internet
images or robot data to perform semantic visual search tasks using DINO or Distance-based rewards.

for eye gaze simulation, and (ii) reinforcement learning methodology—visual search rewards and a
joint BC-RL loop—for learning gaze policies.

3.1 Scalable Experience Collection with EyeGym

Reinforcement learning benefits from scalable experience collection. To facilitate this for eye gaze
policies, we introduce EyeGym: an RL environment that simulates eye gaze by sampling from 360°
image and video data. Unlike prior approaches that rely on synthetic environments and physics sim-
ulators to render simulated views [50, 51, 52, 53, 54, 55, 56], EyeGym renders directly by sampling
from real equirectangular videos and images. This has several key advantages: (i) it reduces the
sim2real gap by exposing policies to authentic textures, lighting, and noise; (ii) it enables training
on native 360° datasets [57, 58, 59], making EyeGym practical and scalable for learning active vi-
sual perception policies that transfer to real-world camera systems (Fig. 3); and (iii) it incurs less
overhead than traditional rendering. We will release EyeGym code to support further research.

We use EyeGym for robot manipulation by first replacing our robot’s physical eyeball with an off-
the-shelf Insta360 X4 360° camera. We can then use this camera to capture robot demonstrations
teleoperated using a GELLO system [60], where the 5.7K, 30FPS equirectangular video sequences
are recorded and synchronized with robot trajectories. Paired data can then be imported into Eye-
Gym for simulating eye gaze on top of demonstrated robot motion. Advantages of this setup include
minimal additional hardware, minimal additional data bandwidth, and compatibility with existing
teleoperation systems [1, 60].

3.2 Learning Gaze Policies with Reinforcement Learning

The goal of EyeRobot is to learn gaze policies that improve downstream task performance. This
is done without expert gaze demonstrations. We instead use the EyeGym environment to present
reinforcement learning policies trained with two sets of rewards: pure visual search and BC-RL.

Visual Search Rewards Search is a critical step of vision for robot manipulation, especially for
large workspaces. As an initial gaze policy study, we evaluate two search tasks with explicit visual
rewards. (a) Scene Search policies attempt to locate image patches that are visually similar to a given
target patch. For this, we use DINO feature similarity between current and target views as a reward
signal. (b) Object Search policies are more fine-grained, and aims to locate specific objects within
scenes. For Object Search, we primarily investigate a “truncated distance reward”. This reward is
zero if the target object is outside the camera’s field of view (FOV) and increases linearly to 1 as the
agent perfectly centers the target in its view.

The BC-RL Loop The quality of gaze policies in EyeRobot can ultimately be measured by down-
stream task performance. Final gaze policies should therefore be optimized for task metrics, rather
than hand-designed rewards like visual search. We propose a BC-RL loop to achieve this. Given a
BC policy controlling a robot arm and an RL policy controlling gaze, the key idea of BC-RL is that
observations flow from the RL policy to the BC policy, while task success metrics flow from the BC
policy to the RL policy. At every BC-RL optimization step, the eye policy attempts to optimize the
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Figure 4: Foveal Robot Transformer (FoRT). Eye observations are processed in a foveal manner,
where each image is processed at multiple scales and concatenated together with the gaze direction.

BC agent’s current performance at matching demonstrated actions, while the BC agent learns how
to perform the task best given the current gaze behavior.

We operationalize BC-RL in EyeGym using the synchronized demonstration and 360 video pairs
detailed in Section 3.1. At each step, the eye receives a reward comparing the predicted action chunk
to the ground-truth action chunk. We use a reward based on the action chunk’s forward-kinematics,
which is better normalized than joint-space error. Specifically, we compute the end effector position
over predicted and ground-truth trajectories, and assign reward to be the negative Fréchet distance
between these splines (penalizing deviation). At the beginning of each demonstration, we pause
time for 30 frames to allow the eye to visually search before advancing time in the video. The BC
agent is trained with a standard L1 loss between predicted and ground truth chunks.

Active Visual Pretraining (AVP) Like other systems that incorporate behavior cloning, a key bot-
tleneck of BC-RL is limited demonstration quantity. Pretraining offers one way to improve learning
efficiency. Inspired by the importance of object search in large-workspace robot manipulation, we
use visual object search reward as a pretext task for pretraining. We pretrain policies in EyeGym
using static video frames sampled randomly from demonstrations. The eye is initialized at the start
of each episode randomly in £90° and +15° from the neutral azimuth and elevation positions. Dur-
ing pretraining, we condition on image feature embeddings of search objects to give networks the
ability to learn about multiple objects; this input is replaced with zero tokens after pretraining.

3.3 Foveal Robot Transformer

EyeRobot uses transformer architectures for its eye and
robot policies (Fig. 4), which convert all observations to
tokens and predicts all outputs as tokens. The eye and
robot policies share projection matrices for shared inputs,
but otherwise use separate transformer weights.

Observation Feature Extraction Though sophisticated

mechanisms for multi-resolution foveation have been pro-  Figure 5: Teleop Data Setup with
posed in prior vision work [46, 61], we wish to leverage EyeRobot. We collect actions with
pretrained vision backbones and thus opt for a simpler GELLO [60], and the EyeGym environ-
architecture involving multi-cropping. We process input ment with a time-synced 360 camera.
images into an image pyramid of crops with N scales cen-

tered at the center pixel, rescaling all images to the same 224 resolution. We embed all patches
independently with a frozen DINOv2-ViT/S [62] encoder, and flatten them token-wise as inputs to
the transformer. Each policy additionally takes as input the eye gaze direction as a 3D vector, the
current joint proprioception, and an optional “target” token for visual search. Each are projected to
the input token dimension with small MLPs. We apply 10% dropout on the proprioceptive tokens to
avoid overfitting. Input tokens are positionally embedded with RoPE [63] to enable batch-parallel
training with sliding window attention (see the Appendix for details).

Outputs Action outputs are decoded from the transformer with lightweight projection heads. Eye
actions are parameterized as a categorical distribution over 8 azimuth-elevation directions and 0.
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Figure 6: Emergent Eye Behavior. (Left) Gaze shifts from towel to bucket during grasping. (Mid-
dle) Gaze centers on E-stop with foveation. (Right) Gaze guides arm to align screwdriver to wood.

We use a learnable input token for each output type, which is shared across timesteps in the output
action chunk.

Attention Masking and Memory EyeRobot masks self-attention to increase the throughput of in-
ference and minimize overfitting. First, we mask all image-image attention since DINOv2 outputs
have already undergone self-attention. Second, we utilize sliding window attention to train on long
rollouts efficiently (up to 100 time-steps), with a window size of 10 for the eye to provide history
of motion, and 1 for the hand to effectively make it single-frame. We use Flex Attention [64] to
efficiently compute these custom masks.

4 Experiments

Our experiments aim to (1) evaluate the ability of using RL to visually search in scenes and find
objects, (2) compare EyeRobot’s performance on manipulation tasks to conventional camera place-
ments, and (3) investigate emergent properties of the hand-eye coordination learned during BC-RL.

Table 1: Scene Search Results.
4.1 Evaluating EyeGym on Visual Search Tasks

" ¢ ) Method CLIP 1 Exact Match 1
H i RL- i

erle v:e zelzr ogn a series 0 Y 01;E y eéperlmteilts. to Rendom Walk 0,629 2B1%
evaluate the e ectiveness of the lyeGym at train-  pioonce Reward 0,704 64.8%
ing agents to look around, after which we can confi-  DINO Reward 0715 60.2%
dently move to using the EyeGym for training BC-  DINO+Distance ~ 0.711 66.5%

RL policies.

Scene Search We train semantic visual search policies on 2,000 360° images from [57]. For each
training episode, we select a randomly located target crop with a field of view between 10° and
65° and condition FoRT on pooled extracted DINO tokens. To reflect the physical limitations of
our gimbal, we constrain both horizontal and vertical movements, preventing full wrap-around. We
experiment with different rewards during training. Evaluation is performed on 500 unseen images,
each with 24 equally space target crops, and results are reported in Table 1. We move the target in an
S-shaped pattern, and for each new location, we allow the policy 20 steps to move before evaluating
CLIP [65] similarity and “Exact Match” rate, which marks how often it can put the target object
within its field of view at the end of the rollout. We find that both the DINO reward and Truncated
Distance Reward lead to successful search behaviors, which we show videos of in the supplement.
Distance reward increases the chances of finding an exact match of the target object.

Object Search We define a task where the goal is to locate target object(s) that the robot may
interact with. We investigate this setting using self-captured videos from robot demonstrations, train
with the “Truncated Distance” reward, and deploy the learned policy to our physical eyeball. In
one evaluation, we train the robot to locate the towel and assess its ability to find it. The towel
is deliberately placed outside the initial field of view, requiring the eyeball to actively explore the
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scene. We achieve a success rate of 87% with an average search time of 1.8 seconds, with failures
occurring only when the towel lies near the far edges of the workspace.

4.2 Robot Manipulation

We evaluate EyeRobot on 5 tasks (Fig. 7) which involve
manipulation over a 210° workspace, to probe the limits
of hand-eye coordination over a large region. All exper-
iments are performed on a URSe with a Robotiq gripper.
Data was collected using GELLO [60], totaling 100-500
demos for each task. This workspace represents a signifi-
cant challenge: some tasks require tolerance on the order
of ¢m, while the workspace is on the order of 1000cm?2.
For all trials, the robot is programmatically reset to the
same pose (shared across ablations and baselines). We
evaluate on 5 large-workspace manipulation tasks: eraser-
on-shelf, e-stop reaching, brush handoff, screwdriver ser-
voing, and towel-in-bucket. See Appendix for details. Figure 7: Tasks. We evaluate EyeRobot

Results Results are reported in Tables 2, 3, 4 and results on 5 large-workspace tasks.

are best viewed in the included execution videos to better

understand qualitative performance. EyeRobot can consistently perform manipulation tasks over a
large workspace, For the Towel task, Most of EyeRobot’s failures are in narrowly missing grasps
on the towel, and we notice it tends to struggle more in switching gaze from bucket to towel, as
evidenced by worse performance in trials where only the bucket is visible. Sometimes it also grasps
only a towel corner, leading to a difficult bucket drop where half the towel dangles outside the
bucket. In our E-Stop trials, EyeRobot never loses track of the object, and its main error is in z-
distance towards the eyeball, owing to the difficulty of resolving depth with a monocular viewpoint.
In the Eraser task, EyeRobot primarily fails by narrowly missing grasps on the eraser. In the place
only trials where the eraser begins in the same location each time, EyeRobot can robustly follow
the perturbed location of the shelf post-grasp. In Screwdriver, EyeRobot achieves a mean error of
4.0cm when the target is flat, and 5.2cm when the target is tilted 45°, compared to a total test area
spanning 115cm left to right. The Brush task successfully grasps the brush at the correct orientation
15/20 trials, and successfully completed the human handover 14/15 times.

4.2.1 Eye Behavior

We observe three emergent behaviors that the eye learns

while being rewarded for mimicking demonstrations:

switching, search, and independent tracking. In multi-

step tasks, the eye learns to automatically switch its gaze

towards the next relevant object, depending on the state

of the robot (Fig 1). For long-horizon tasks this requires

that the eye search for the subsequent target objects when

it is not in view, or even just make smaller fixation adjust-

ments for objects that are only partially visible (Fig 6).

Its search strategy tends to oscillate back and forth in a

sweeping motion. When the target location is moved mid

placement (e.g., ‘perturb’ condition in Table 2) the eye

tracks the new target location, independently of the robot  Figure 8: Effect of Camera Place-
arm. Finally, in more dynamic tasks, we note that the ment. Placing the camera on a gim-
eye learns to attend to predictive cues in the environment bal allows it to observe across the whole
(e.g., humans placing a target object). Taken together, Workspace at a higher resolution.

these qualitative results suggest the potential of an active

vision agent trained with RL to naturally complement a behavior cloning agent in achieving tasks.
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Table 2: Camera Comparisons. We report success rate (Eraser & E-Stop) and distance to target (E-Stop).

Task EyeRobot Exo  Wrist Wrist+Exo \ Task EyeRobot Exo  Wrist Wrist+Exo
Eraser (Pick & Place) 60% 0% 100% 60% Eraser (Perturb Place)  100% - 10% 40%
E-Stop (Slow) 100% 100% 80% 100% E-Stop (Fast) 100% 100% 60% 100%
E-Stop (Slow) 40cm 7.8cm 5.3cm 7.1cm E-Stop (Fast) 47cm  99cm 4.7cm 5.5cm

4.2.2 Wrist, Exo Comparisons

An important question is how EyeRobot compares to more conventional camera placements, namely
exo- and wrist-mounted cameras (Fig. 7). We perform comparisons on the E-Stop and Eraser tasks,
by training on the exact same data with the same architecture. For exo-only and wrist-only baselines,
we input images at 640 resolution, while for wrist+exo we use 360. Both comparisons have more
input image tokens than FoRT, and the same number of model parameters.

Results are reported for the eraser and e-stop tasks in Table 2. When the wrist camera can view
the eraser, the wrist camera achieves a very high success rate, although this performance greatly
suffers in the perturbation trials where the wrist cannot search. In contrast, EyeRobot can adjust its
viewpoint to maintain the shelf in view at all times. The exo camera baseline struggles to achieve
precise enough grasps given its low resolution; while often touching the eraser, it never successfuly
grasps it. The exo+wrist baseline also performs worse at servoing compared to wrist-only, likely
due to the complexity of merging image tokens from multiple cameras—though it can occasionally

succeed in locating the perturbed shelf.
Table 3: E-Stop Ablations (Error | / Speed |)

4.3 Ablations

Task EyeRobot No Foveal
No Foveation: To understand the contribution Eiiiﬁg EEL:X) 32352?21@2 23§2f3?§
of foveated inputs on EyeRobot’s behavior, we Average Adem /505 Odem s 62
train and evaluate a BC-RL gaze model that op-
erates over a uniform image resolution. To con- Table 4: Towel Ablations (Success Rate)
trol for the number of image tokens we use in-
puts of 1x448x448 instead of 4x224x224. We Visible At Start__ EyeRobot No AVP
find this model does not exhibit the qualitative Both Visible o o
behaviors that are evident in foveated models; it Bucket Visible 50% 70%
only loosely maintains the target object within its Neither Visible 60% 60%
general field of view (Fig. 6). Quantitatively, this Average 72.2%(£13.1%)  62.1%(+14.2%)

uniform image resolution leads to degraded per-

formance on all metrics evaluated for E-Stop, while settling significantly slower due to its un-stable
viewpoint (Table 3). These data suggest potential performance benefits in adopting a foveal archi-
tecture for manipulation owing to the arisal of fixation.

No Active Visual Pretraining: We ablate AVP on the towel task, and surprisingly find that long-
range visual search can emerge purely from task driven BC-RL. We note, however, that grasping
performance suffers compared to the model with AVP, which we attribute partially to poorly initial-
ized network weights and partially to poor training data distribution early in BC-RL training, as the
eye fails to fixate correctly early in training.

5 Conclusion

EyeRobot presents a method for training a mechanical eyeball to look around to achieve physical
robot manipulation via a real-to-sim-to-real pipeline utilizing 360° videos. This simulation envi-
ronment allows the training of active visual policies with RL on top of teleop demonstrations, with
which we train a visual agent to look around to maximize task-based BC performance. We find
this agent learns to look to facilitate action, resulting in emergent eye behaviors such as search and
fixation, and that the eye enables manipulation across a large workspace.
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6 Limitations

The primary limitation of EyeRobot is the inability of 360 video to simulate motion parallax, i.e,
what a neck would provide. In addition, adding depth cues like stereo would require physically
changing the setup and incorporating another eye, or using monocular depth estimators during Ey-
eGym simulation. Alternatively, depth could be added as a separate fine-tuning stage after active
vision. Another drawback of EyeRobot is its eagerness to learn strategies which match simulation
very well, but fail in real due to narrow data distributions. Concretely, one behavior we observe in
the towel task is “blind grasping”, where the robot will sometimes look left, and upon observing no
towel, grasps an average location to the right. This arises from the demonstration data distribution,
owing to the fact there are fewer demos at the edges of the workspace. Finally, training BC-RL con-
verges significantly slower than vanilla BC. This is because of the co-training of two models which
are mutually used in the others’ train loop. We are currently limited to a stationary workstation, but
an exciting future direction would be to mount the eyeball on a mobile robot, further increasing the
need for active vision.
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