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Figure 1: EyeRobot. We present a robotic system with an active eye, where the behavior of looking
emerges from the need to act. A foveated mechanical eye, inspired by biological vision, is trained
via reinforcement learning in a novel real-to-sim BC-RL loop. Shown here is a long-horizon pick-
and-place task involving a towel and a bucket—neither visible in the initial view. The robot looks for
the towel, grasps it, then searches for the bucket to complete the task. This hand-eye coordination
emerges purely from the task reward without any gaze demonstration.

“We perceive in order to act and we act in order to perceive.” — JJ Gibson1

Abstract: Humans do not passively observe the visual world—we actively look2

in order to act. Motivated by this principle, we introduce EyeRobot, a robotic sys-3

tem with gaze behavior that emerges from the need to complete real-world tasks.4

We develop a mechanical eyeball that can freely rotate to observe its surroundings5

and train a gaze policy to control it using reinforcement learning. We accomplish6

this by introducing a BC-RL loop, which is trained using teleoperated demonstra-7

tions and eye gaze actions that can be simulated by sampling from 360◦ video.8

The hand (BC) agent is trained from rendered eye observations, and the eye (RL)9

agent is rewarded when the hand produces correct actions. In this way, hand-eye10

coordination emerges as the eye looks towards regions which allow the hand to11

complete the task. We evaluate EyeRobot on five large workspace manipulation12

tasks and compare performance to two common camera setups: wrist and exter-13

nal cameras. Our experiments suggest EyeRobot exhibits hand-eye coordination14

which effectively facilitates action such as visual search or target switching, which15

enable manipulation across large workspaces.16

Keywords: Active Vision, Reinforcement Learning, Behavior Cloning, Manipu-17

lation18
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1 Introduction19

Have you had water recently? Take a moment to reach for the nearest cup. As you do, your eyes20

move first—scanning the table, darting from region to region to locate the cup. Once it’s in sight,21

your hand follows. This tight coupling between attention and eye movements is not incidental; it22

reflects a fundamental constraint of the human visual system. We are not built to perceive everything23

at once. As a result, we must look around—and in this sense, vision can be understood as a form24

of search. But what drives the search? The need to act—to accomplish something in the world.25

Whether gathering information about task-relevant properties or guiding the execution of a precise26

action, we look because we have something to do.27

In this work, we present a robotic system where the same principle—looking to enable action—28

emerges naturally from a desired real world task without the need for gaze demonstrations, im-29

plemented on a mechanical eyeball that can freely rotate to observe its surroundings. The core30

challenge is how to train such a visual agent within the constraints of the physical world? To address31

this, we introduce a BC-RL loop enabled by a 360 camera-based real-to-sim environment. This32

does not require any gaze demonstrations; instead, hand-eye coordinate emerges solely from task33

supervision.34

To specify what “action” we desire from the system, we build on recent advances in policy learning35

from behavior cloning [1]. We augment existing teleoperation systems to collect synchronized 360◦36

video and robot trajectory data, creating an EyeGym environment that enables replay of demon-37

strations with renderings from simulated eyeball viewpoints. Equipped with this environment, we38

propose a BC-RL algorithm for training an RL eye policy with a task-based reward, which samples39

rollouts from the current eye agent to use as observations to supervise a behavior cloning agent. The40

accuracy of these action predictions are cyclically used as rewards for the eye agent (Fig. 2). As41

these agents co-train, the eye thus learns to look around to optimize the performance of the behavior42

cloning agent—search emerges from the need to act.43

Inspired by nature’s solution, we design a Foveal Robot Transformer (FoRT) architecture which pro-44

cesses visual input in a foveated manner: peripheral vision provides broad, low-resolution coverage45

of the visual field, while foveal vision offers high-resolution input over a restricted area. Our ex-46

periments show this multi-resolution architecture results in enhanced fixation during task execution,47

which can improve downstream performance. In addition, we find that pretraining the eye policy48

on visual search task slightly improves manipulation performance and convergence speed, though49

hand-eye coordination with search behavior still emerges even without it. Figure 1 illustrates an50

example of behavior which emerges in EyeRobot to accomplish a long-horizon pick-and-place task51

involving a towel and a bucket—neither of which is visible in the initial camera view. The robot52

begins by scanning the table to locate the towel. After identifying it, the robot picks it up, then shifts53

its gaze to find the bucket, and finally places the towel inside, all with a single monocular ego-view.54

Our experiments evaluate EyeRobot on 5 large-workspace manipulation tasks, involving objects on55

a 180◦ panoramic workspace surrounding the arm. Across these tasks we observe a number of emer-56

gent behaviors not explicitly trained for—switching from one target to another depending on task57

stage, long-range search, and independently coordinated hand-eye movements. We find EyeRobot58

enables promising performance on a variety of large-workspace pick-and-place and servoing tasks59

with a single egocentric active camera, a physical setup more practically suited to mobile deploy-60

ment than external cameras. Nevertheless, we compare to external mounted camera baseline, and61

find that EyeRobot outperforms them, likely due to the limited resolution of the zoomed-out per-62

spective. We also compare with a wrist camera, which performs well when objects are in-view but63

struggles in a large workspace setup that requires search.64

2 Related Work65

Active Vision Active perception systems physically move sensors to not only see, but to66

look [2, 3, 4, 5]. This arises naturally from physical constraints faced by embodied agents, which67
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Figure 2: EyeRobot framework. Left: Physical hardware setup. We develop a mechanical eyeball
with two degrees of freedom, mounted on a high-speed gimbal and equipped with a fisheye lens and
global shutter. Right: The eye policy is trained via a BC-RL loop.

have only partial observations of the world at any point in time. The key insight of active vision is68

that actuation lets agents shape the utility of these observations to better achieve their goals. Existing69

systems primarily use active vision to maximize information gain for visual tasks: examples include70

tracking [6, 7], search [8, 9, 10], observation completion [11], and view selection for 3D reconstruc-71

tion [12, 13, 14, 15] using voxel [16], surfel [17], or point cloud [18] representations. Other works72

couple active sensing setups with robot manipulators and evaluate systems in terms of downstream73

task performance: this includes improvements in semantic understanding [19], as well as compu-74

tational efficiency [20] and occlusion robustness [21] for robot manipulation. Like these systems,75

EyeRobot also studies active vision for robot manipulation. Instead of relying on heuristics [19]76

or camera action demonstrations [20, 21], however, EyeRobot proposes to learn optimal eye gaze77

policies directly with reinforcement learning; we learn where to look in order to act.78

Behavior Cloning Behavior cloning (BC) [22, 23, 24, 25] is the dominant paradigm for teaching79

robots manipulation skills. BC is advantageous because it does not require hand-designed behaviors,80

costs, and rewards—instead, BC policies are simply trained to imitate human demonstrations. Prior81

work has shown how this can enable new capabilities in mobile [26, 27], bimanual [1, 28, 29, 30],82

and language-conditioned [31, 32, 33, 34] robot manipulation. Policies of this form can also be83

implemented using a diverse range of architectures, including energy-based [35], diffusion [33], and84

autoregressive [36, 34]. In EyeRobot, we adopt a similar imitation-based system for manipulation85

in large workspaces. In contrast to prior systems that solely focus on learning from demonstration,86

however, EyeRobot’s BC-RL training shows how behavior cloning objectives for robot actions can87

(i) be optimized jointly with an eye gaze reinforcement learning objective and (ii) used as a reward88

itself for reinforcement learning.89

Biology-Inspired Machine Perception Many computer vision systems draw inspiration from90

biology to improve efficiency, adaptability, and performance. For example, simple stereo cam-91

eras [37, 38, 39] mimic the binocular vision of animals to support depth perception, while event92

cameras [40, 41, 42] mimic retinal spikes to enable low-latency perception. Foveated systems emu-93

late the resource-rational nonuniformity of the retina, using either specialized hardware [43, 44, 45]94

or learned neural mechanisms [46, 47]. Beyond sensing, gaze control has been modeled after ocu-95

lomotor behaviors like smooth pursuit and saccades [48], and implemented in hybrid pipelines that96

combine peripheral detection with foveal tracking [49]. EyeRobot builds on the same principles as97

these prior works, drawing on the benefits of foveation and gaze control. However, its implementa-98

tion differs significantly: rather than rely on specialized sensors or hardcoded behaviors, we mount a99

standard RGB camera on a high-speed gimbal, apply foveation using a multi-resolution transformer,100

and learn a gaze policy via reinforcement learning.101

3 Approach102

EyeRobot trains gaze policies for manipulation using reinforcement learning. We conduct experi-103

ments using a UR5e robot arm with a gimbal-mounted camera mounted rigidly to the base of the104

robot. To train gaze policies for hand-eye coordination, we propose (i) EyeGym, an environment105
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Figure 3: Learning to Look with EyeGym. EyeGym enables training policies on 360° internet
images or robot data to perform semantic visual search tasks using DINO or Distance-based rewards.

for eye gaze simulation, and (ii) reinforcement learning methodology—visual search rewards and a106

joint BC-RL loop—for learning gaze policies.107

3.1 Scalable Experience Collection with EyeGym108

Reinforcement learning benefits from scalable experience collection. To facilitate this for eye gaze109

policies, we introduce EyeGym: an RL environment that simulates eye gaze by sampling from 360◦110

image and video data. Unlike prior approaches that rely on synthetic environments and physics sim-111

ulators to render simulated views [50, 51, 52, 53, 54, 55, 56], EyeGym renders directly by sampling112

from real equirectangular videos and images. This has several key advantages: (i) it reduces the113

sim2real gap by exposing policies to authentic textures, lighting, and noise; (ii) it enables training114

on native 360◦ datasets [57, 58, 59], making EyeGym practical and scalable for learning active vi-115

sual perception policies that transfer to real-world camera systems (Fig. 3); and (iii) it incurs less116

overhead than traditional rendering. We will release EyeGym code to support further research.117

We use EyeGym for robot manipulation by first replacing our robot’s physical eyeball with an off-118

the-shelf Insta360 X4 360◦ camera. We can then use this camera to capture robot demonstrations119

teleoperated using a GELLO system [60], where the 5.7K, 30FPS equirectangular video sequences120

are recorded and synchronized with robot trajectories. Paired data can then be imported into Eye-121

Gym for simulating eye gaze on top of demonstrated robot motion. Advantages of this setup include122

minimal additional hardware, minimal additional data bandwidth, and compatibility with existing123

teleoperation systems [1, 60].124

3.2 Learning Gaze Policies with Reinforcement Learning125

The goal of EyeRobot is to learn gaze policies that improve downstream task performance. This126

is done without expert gaze demonstrations. We instead use the EyeGym environment to present127

reinforcement learning policies trained with two sets of rewards: pure visual search and BC-RL.128

Visual Search Rewards Search is a critical step of vision for robot manipulation, especially for129

large workspaces. As an initial gaze policy study, we evaluate two search tasks with explicit visual130

rewards. (a) Scene Search policies attempt to locate image patches that are visually similar to a given131

target patch. For this, we use DINO feature similarity between current and target views as a reward132

signal. (b) Object Search policies are more fine-grained, and aims to locate specific objects within133

scenes. For Object Search, we primarily investigate a “truncated distance reward”. This reward is134

zero if the target object is outside the camera’s field of view (FOV) and increases linearly to 1 as the135

agent perfectly centers the target in its view.136

The BC-RL Loop The quality of gaze policies in EyeRobot can ultimately be measured by down-137

stream task performance. Final gaze policies should therefore be optimized for task metrics, rather138

than hand-designed rewards like visual search. We propose a BC-RL loop to achieve this. Given a139

BC policy controlling a robot arm and an RL policy controlling gaze, the key idea of BC-RL is that140

observations flow from the RL policy to the BC policy, while task success metrics flow from the BC141

policy to the RL policy. At every BC-RL optimization step, the eye policy attempts to optimize the142
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Figure 4: Foveal Robot Transformer (FoRT). Eye observations are processed in a foveal manner,
where each image is processed at multiple scales and concatenated together with the gaze direction.

BC agent’s current performance at matching demonstrated actions, while the BC agent learns how143

to perform the task best given the current gaze behavior.144

We operationalize BC-RL in EyeGym using the synchronized demonstration and 360 video pairs145

detailed in Section 3.1. At each step, the eye receives a reward comparing the predicted action chunk146

to the ground-truth action chunk. We use a reward based on the action chunk’s forward-kinematics,147

which is better normalized than joint-space error. Specifically, we compute the end effector position148

over predicted and ground-truth trajectories, and assign reward to be the negative Fréchet distance149

between these splines (penalizing deviation). At the beginning of each demonstration, we pause150

time for 30 frames to allow the eye to visually search before advancing time in the video. The BC151

agent is trained with a standard L1 loss between predicted and ground truth chunks.152

Active Visual Pretraining (AVP) Like other systems that incorporate behavior cloning, a key bot-153

tleneck of BC-RL is limited demonstration quantity. Pretraining offers one way to improve learning154

efficiency. Inspired by the importance of object search in large-workspace robot manipulation, we155

use visual object search reward as a pretext task for pretraining. We pretrain policies in EyeGym156

using static video frames sampled randomly from demonstrations. The eye is initialized at the start157

of each episode randomly in ±90◦ and ±15◦ from the neutral azimuth and elevation positions. Dur-158

ing pretraining, we condition on image feature embeddings of search objects to give networks the159

ability to learn about multiple objects; this input is replaced with zero tokens after pretraining.160

3.3 Foveal Robot Transformer161

Figure 5: Teleop Data Setup with
EyeRobot. We collect actions with
GELLO [60], and the EyeGym environ-
ment with a time-synced 360 camera.

EyeRobot uses transformer architectures for its eye and162

robot policies (Fig. 4), which convert all observations to163

tokens and predicts all outputs as tokens. The eye and164

robot policies share projection matrices for shared inputs,165

but otherwise use separate transformer weights.166

Observation Feature Extraction Though sophisticated167

mechanisms for multi-resolution foveation have been pro-168

posed in prior vision work [46, 61], we wish to leverage169

pretrained vision backbones and thus opt for a simpler170

architecture involving multi-cropping. We process input171

images into an image pyramid of crops with N scales cen-172

tered at the center pixel, rescaling all images to the same 224 resolution. We embed all patches173

independently with a frozen DINOv2-ViT/S [62] encoder, and flatten them token-wise as inputs to174

the transformer. Each policy additionally takes as input the eye gaze direction as a 3D vector, the175

current joint proprioception, and an optional “target” token for visual search. Each are projected to176

the input token dimension with small MLPs. We apply 10% dropout on the proprioceptive tokens to177

avoid overfitting. Input tokens are positionally embedded with RoPE [63] to enable batch-parallel178

training with sliding window attention (see the Appendix for details).179

Outputs Action outputs are decoded from the transformer with lightweight projection heads. Eye180

actions are parameterized as a categorical distribution over 8 azimuth-elevation directions and 0⃗.181
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Figure 6: Emergent Eye Behavior. (Left) Gaze shifts from towel to bucket during grasping. (Mid-
dle) Gaze centers on E-stop with foveation. (Right) Gaze guides arm to align screwdriver to wood.

We use a learnable input token for each output type, which is shared across timesteps in the output182

action chunk.183

Attention Masking and Memory EyeRobot masks self-attention to increase the throughput of in-184

ference and minimize overfitting. First, we mask all image-image attention since DINOv2 outputs185

have already undergone self-attention. Second, we utilize sliding window attention to train on long186

rollouts efficiently (up to 100 time-steps), with a window size of 10 for the eye to provide history187

of motion, and 1 for the hand to effectively make it single-frame. We use Flex Attention [64] to188

efficiently compute these custom masks.189

4 Experiments190

Our experiments aim to (1) evaluate the ability of using RL to visually search in scenes and find191

objects, (2) compare EyeRobot’s performance on manipulation tasks to conventional camera place-192

ments, and (3) investigate emergent properties of the hand-eye coordination learned during BC-RL.193

4.1 Evaluating EyeGym on Visual Search Tasks194
Table 1: Scene Search Results.

Method CLIP ↑ Exact Match ↑
Random Walk 0.629 28.1%
Distance Reward 0.704 64.8%
DINO Reward 0.715 60.2%
DINO+Distance 0.711 66.5%

Here we perform a series of RL-only experiments to195

evaluate the effectiveness of the EyeGym at train-196

ing agents to look around, after which we can confi-197

dently move to using the EyeGym for training BC-198

RL policies.199

Scene Search We train semantic visual search policies on 2,000 360◦ images from [57]. For each200

training episode, we select a randomly located target crop with a field of view between 10° and201

65° and condition FoRT on pooled extracted DINO tokens. To reflect the physical limitations of202

our gimbal, we constrain both horizontal and vertical movements, preventing full wrap-around. We203

experiment with different rewards during training. Evaluation is performed on 500 unseen images,204

each with 24 equally space target crops, and results are reported in Table 1. We move the target in an205

S-shaped pattern, and for each new location, we allow the policy 20 steps to move before evaluating206

CLIP [65] similarity and “Exact Match” rate, which marks how often it can put the target object207

within its field of view at the end of the rollout. We find that both the DINO reward and Truncated208

Distance Reward lead to successful search behaviors, which we show videos of in the supplement.209

Distance reward increases the chances of finding an exact match of the target object.210

Object Search We define a task where the goal is to locate target object(s) that the robot may211

interact with. We investigate this setting using self-captured videos from robot demonstrations, train212

with the “Truncated Distance” reward, and deploy the learned policy to our physical eyeball. In213

one evaluation, we train the robot to locate the towel and assess its ability to find it. The towel214

is deliberately placed outside the initial field of view, requiring the eyeball to actively explore the215
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scene. We achieve a success rate of 87% with an average search time of 1.8 seconds, with failures216

occurring only when the towel lies near the far edges of the workspace.217

4.2 Robot Manipulation218

Figure 7: Tasks. We evaluate EyeRobot
on 5 large-workspace tasks.

We evaluate EyeRobot on 5 tasks (Fig. 7) which involve219

manipulation over a 210◦ workspace, to probe the limits220

of hand-eye coordination over a large region. All exper-221

iments are performed on a UR5e with a Robotiq gripper.222

Data was collected using GELLO [60], totaling 100-500223

demos for each task. This workspace represents a signifi-224

cant challenge: some tasks require tolerance on the order225

of cm, while the workspace is on the order of 1000cm2.226

For all trials, the robot is programmatically reset to the227

same pose (shared across ablations and baselines). We228

evaluate on 5 large-workspace manipulation tasks: eraser-229

on-shelf, e-stop reaching, brush handoff, screwdriver ser-230

voing, and towel-in-bucket. See Appendix for details.231

Results Results are reported in Tables 2, 3, 4 and results232

are best viewed in the included execution videos to better233

understand qualitative performance. EyeRobot can consistently perform manipulation tasks over a234

large workspace, For the Towel task, Most of EyeRobot’s failures are in narrowly missing grasps235

on the towel, and we notice it tends to struggle more in switching gaze from bucket to towel, as236

evidenced by worse performance in trials where only the bucket is visible. Sometimes it also grasps237

only a towel corner, leading to a difficult bucket drop where half the towel dangles outside the238

bucket. In our E-Stop trials, EyeRobot never loses track of the object, and its main error is in z-239

distance towards the eyeball, owing to the difficulty of resolving depth with a monocular viewpoint.240

In the Eraser task, EyeRobot primarily fails by narrowly missing grasps on the eraser. In the place241

only trials where the eraser begins in the same location each time, EyeRobot can robustly follow242

the perturbed location of the shelf post-grasp. In Screwdriver, EyeRobot achieves a mean error of243

4.0cm when the target is flat, and 5.2cm when the target is tilted 45◦, compared to a total test area244

spanning 115cm left to right. The Brush task successfully grasps the brush at the correct orientation245

15/20 trials, and successfully completed the human handover 14/15 times.246

4.2.1 Eye Behavior247

Figure 8: Effect of Camera Place-
ment. Placing the camera on a gim-
bal allows it to observe across the whole
workspace at a higher resolution.

We observe three emergent behaviors that the eye learns248

while being rewarded for mimicking demonstrations:249

switching, search, and independent tracking. In multi-250

step tasks, the eye learns to automatically switch its gaze251

towards the next relevant object, depending on the state252

of the robot (Fig 1). For long-horizon tasks this requires253

that the eye search for the subsequent target objects when254

it is not in view, or even just make smaller fixation adjust-255

ments for objects that are only partially visible (Fig 6).256

Its search strategy tends to oscillate back and forth in a257

sweeping motion. When the target location is moved mid258

placement (e.g., ‘perturb’ condition in Table 2) the eye259

tracks the new target location, independently of the robot260

arm. Finally, in more dynamic tasks, we note that the261

eye learns to attend to predictive cues in the environment262

(e.g., humans placing a target object). Taken together,263

these qualitative results suggest the potential of an active264

vision agent trained with RL to naturally complement a behavior cloning agent in achieving tasks.265
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Table 2: Camera Comparisons. We report success rate (Eraser & E-Stop) and distance to target (E-Stop).

Task EyeRobot Exo Wrist Wrist+Exo Task EyeRobot Exo Wrist Wrist+Exo

Eraser (Pick & Place) 60% 0% 100% 60% Eraser (Perturb Place) 100% - 10% 40%
E-Stop (Slow) 100% 100% 80% 100% E-Stop (Fast) 100% 100% 60% 100%
E-Stop (Slow) 4.0cm 7.8cm 5.3cm 7.1cm E-Stop (Fast) 4.7cm 9.9cm 4.7cm 5.5cm

4.2.2 Wrist, Exo Comparisons266

An important question is how EyeRobot compares to more conventional camera placements, namely267

exo- and wrist-mounted cameras (Fig. 7). We perform comparisons on the E-Stop and Eraser tasks,268

by training on the exact same data with the same architecture. For exo-only and wrist-only baselines,269

we input images at 640 resolution, while for wrist+exo we use 360. Both comparisons have more270

input image tokens than FoRT, and the same number of model parameters.271

Results are reported for the eraser and e-stop tasks in Table 2. When the wrist camera can view272

the eraser, the wrist camera achieves a very high success rate, although this performance greatly273

suffers in the perturbation trials where the wrist cannot search. In contrast, EyeRobot can adjust its274

viewpoint to maintain the shelf in view at all times. The exo camera baseline struggles to achieve275

precise enough grasps given its low resolution; while often touching the eraser, it never successfuly276

grasps it. The exo+wrist baseline also performs worse at servoing compared to wrist-only, likely277

due to the complexity of merging image tokens from multiple cameras–though it can occasionally278

succeed in locating the perturbed shelf.279

4.3 Ablations280

Table 3: E-Stop Ablations (Error ↓ / Speed ↓)

Task EyeRobot No Foveal

E-Stop (Slow) 4.0cm / 4.2s 5.9cm / 5.3s
E-Stop (Fast) 4.7cm / 5.8s 6.9cm / 7.1s

Average 4.4cm / 5.0s 6.4cm / 6.2s

Table 4: Towel Ablations (Success Rate)

Visible At Start EyeRobot No AVP

Both Visible 80% 73%
Towel Visible 95% 40%
Bucket Visible 50% 70%
Neither Visible 60% 60%

Average 72.2%(±13.1%) 62.1%(±14.2%)

No Foveation: To understand the contribution281

of foveated inputs on EyeRobot’s behavior, we282

train and evaluate a BC-RL gaze model that op-283

erates over a uniform image resolution. To con-284

trol for the number of image tokens we use in-285

puts of 1x448x448 instead of 4x224x224. We286

find this model does not exhibit the qualitative287

behaviors that are evident in foveated models; it288

only loosely maintains the target object within its289

general field of view (Fig. 6). Quantitatively, this290

uniform image resolution leads to degraded per-291

formance on all metrics evaluated for E-Stop, while settling significantly slower due to its un-stable292

viewpoint (Table 3). These data suggest potential performance benefits in adopting a foveal archi-293

tecture for manipulation owing to the arisal of fixation.294

No Active Visual Pretraining: We ablate AVP on the towel task, and surprisingly find that long-295

range visual search can emerge purely from task driven BC-RL. We note, however, that grasping296

performance suffers compared to the model with AVP, which we attribute partially to poorly initial-297

ized network weights and partially to poor training data distribution early in BC-RL training, as the298

eye fails to fixate correctly early in training.299

5 Conclusion300

EyeRobot presents a method for training a mechanical eyeball to look around to achieve physical301

robot manipulation via a real-to-sim-to-real pipeline utilizing 360◦ videos. This simulation envi-302

ronment allows the training of active visual policies with RL on top of teleop demonstrations, with303

which we train a visual agent to look around to maximize task-based BC performance. We find304

this agent learns to look to facilitate action, resulting in emergent eye behaviors such as search and305

fixation, and that the eye enables manipulation across a large workspace.306
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6 Limitations307

The primary limitation of EyeRobot is the inability of 360 video to simulate motion parallax, i.e,308

what a neck would provide. In addition, adding depth cues like stereo would require physically309

changing the setup and incorporating another eye, or using monocular depth estimators during Ey-310

eGym simulation. Alternatively, depth could be added as a separate fine-tuning stage after active311

vision. Another drawback of EyeRobot is its eagerness to learn strategies which match simulation312

very well, but fail in real due to narrow data distributions. Concretely, one behavior we observe in313

the towel task is “blind grasping”, where the robot will sometimes look left, and upon observing no314

towel, grasps an average location to the right. This arises from the demonstration data distribution,315

owing to the fact there are fewer demos at the edges of the workspace. Finally, training BC-RL con-316

verges significantly slower than vanilla BC. This is because of the co-training of two models which317

are mutually used in the others’ train loop. We are currently limited to a stationary workstation, but318

an exciting future direction would be to mount the eyeball on a mobile robot, further increasing the319

need for active vision.320
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