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Abstract: Scaling robot learning requires vast and diverse datasets. Yet1

the prevailing data collection paradigm—human teleoperation—remains costly2

and constrained by manual effort and physical robot access. We introduce3

Real2Render2Real (R2R2R), a novel approach for generating robot training4

data without relying on object dynamics simulation or teleoperation of robot hard-5

ware. The input is a smartphone-captured scan of one or more objects and a6

single video of a human demonstration. In contrast to simulation, R2R2R renders7

thousands of high visual fidelity robot-agnostic demonstrations by reconstructing8

detailed 3D object geometry and appearance, and tracking 6-DoF object motion.9

R2R2R uses 3D Gaussian Splatting (3DGS) to enable flexible asset generation10

and trajectory synthesis for both rigid and articulated objects, converting these11

representations to meshes to maintain compatibility with scalable rendering engines12

like IsaacLab but with collision modeling off. Robot demonstration data generated13

by R2R2R integrates directly with models that operate on robot proprioceptive14

states and image observations, such as vision-language-action models (VLA) and15

imitation learning policies. Over 1000 physical experiments suggest that models16

trained on R2R2R data from a single human demonstration can match the perfor-17

mance of models trained on 150 human teleoperation demonstrations. Project page:18

https://real2render2real.github.io/.19
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1 Introduction21

The great power of general purpose methods . . . [is that they] continue to scale22

with increased computation.23

— Richard Sutton, The Bitter Lesson (2019)24

Robotics has long benefited from computational scalability—methods like probabilistic planning,25

trajectory optimization, and reinforcement learning have driven significant progress in agile locomo-26

tion [1, 2, 3, 4, 5, 6, 7]. Dexterous manipulation, however, presents unique challenges: it requires27

fine-grained visual perception tightly coupled with robot control and kinematics to interact with28

objects and alter the environment. Many systems address this by explicitly separating perception29

from planning and control, achieving strong performance in structured environments [8, 9, 10, 11], es-30

pecially when assumptions about scene geometry, object placement, and sensing modalities hold. Yet31

such pipelines often rely on task-specific perception modules and carefully controlled environments,32

limiting flexibility in more unstructured, dynamic, or visually diverse settings.33

In the hope of addressing open-world manipulation tasks, inspired by large language models (LLMs)34

and vision-language models (VLMs) [12, 13, 14, 15], recent efforts have explored end-to-end35

generalist robot policies [16, 17, 18, 19, 20, 21, 22, 23, 24, 25]—models that learn directly from36

raw sensory input and promise capabilities like language instruction following, task transfer, and37
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Figure 1: Real2Render2Real generating robot training data for the task of “Put the Mug on the Coffee Maker”.
R2R2R takes as input a multi-view object scan and a monocular human demonstration video. R2R2R then
synthesizes diverse, domain-randomized robot executions through parallel rendering and outputs paired image-
action data for policy training. This pipeline enables scalable learning across tasks and embodiments without
teleoperation or object dynamics simulation.

in-context learning. Yet training such models at scale remains limited by data: the largest human38

teleoperation datasets are over 100,000× smaller than the corpora used to train frontier LLMs and39

VLMs [26, 27], and are constrained by the cost, speed, and embodiment-specific nature of human40

teleoperated data collection.41

Other vision-language subfields have faced similar data scarcity—and overcome it through com-42

putational data generation. Structure-from-motion, detection, and depth pipelines now routinely43

produce pseudo-labels to bootstrap large models; for instance, SpatialVLM synthesizes two billion44

spatial-reasoning QA pairs [28], while RAFT [29], DUSt3R [30], MonST3R [31], Zero-1-to-3 [32],45

and MVGD [33] all rely on pseudo ground-truth derived from multi-view geometry pipelines (e.g.,46

COLMAP [34]) to supervise dense 3D prediction tasks. These successes suggest an analogous47

question for robotics:48

Can we computationally scale robot vision-action data – while not requiring dynamics simulation or49

human teleoperation – to train robot learning models?50

Prior efforts have turned to physics-based simulation, where trajectories are synthesized via reinforce-51

ment learning or motion planning in virtual environments [35, 36, 37]. While modern simulators offer52

high throughput and support large-scale parallelization, they face several fundamental limitations:53

many commonly used simulators fail to satisfy basic Lagrangian mechanics, such as conservation of54

energy or momentum [38]; accurately modeling complex object interactions often demands extensive55

parameter tuning and hand-crafting of contact properties [39]; generating high-quality, compliant,56

and intersection-free assets for simulation remains labor-intensive, as collision modeling requires57

careful handling of geometry, friction, and deformation [40, 41]. R2R2R avoids these challenges58

by discarding dynamics: instead of simulating forces or contacts, we directly set object and robot59

poses per frame using the IsaacLab package [42] purely as a photorealistic, parallelized rendering60

engine by setting all objects as kinematic rather than dynamic bodies. This approach respects robot61

kinematics while avoiding the complexities of contact modeling, naturally aligning with vision-based62

policies trained from RGB images and proprioceptive inputs.63

We introduce Real2Render2Real (R2R2R), a pipeline for generating large-scale synthetic robot64

training data from a smartphone object scan and a human demonstration video. R2R2R scales65

trajectory diversity while preserving visual accuracy: it extracts 6-DoF object part trajectories from66

the video using weakly supervised 4D tracking, and generates corresponding robot executions via67

differential inverse kinematics under randomized object initializations. Starting from a multi-view68

scan, it reconstructs 3D object geometry and appearance, supports both rigid and articulated objects69

via part-level decomposition, and uses 3D Gaussian Splatting to produce mesh assets. The resulting70

trajectories include robot proprioception, end-effector actions, and paired RGB observations rendered71
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Figure 2: Data Generation Efficiency and Average Policy Performance Across Manipulation Tasks.
(Left) Performance visualization displaying both task-specific outcomes (faint background lines) and cross-task
averages (bold lines with error shading) for policies trained on real (1 human teleoperator) vs. synthetic data (1
human, 1 GPU). Points labeled by demonstration count (50-1000) reveal the scaling of performance despite
R2R2R’s significant throughput advantage, with individual task trajectories illustrating the variance across
different manipulation scenarios. (Right) Log-log scale comparison showing data generation throughput between
R2R2R (1-100 GPUs) and human teleoperation (1-100 operators) over a 12-hour period. R2R2R needs an
upfront time of 10 minutes for human to scan the objects, demonstrate the task, reconstruct the objects and
track their trajectory, where subsequentially no human is involved. On a single NVIDIA 4090 GPU, on average,
trajectories will be generated at 27x the speed of a single human teleoperator without needing robot hardware.

under varied lighting, camera pose, and object placement—making them directly compatible with72

modern imitation learning policies such as vision-language-action models and diffusion models. By73

eliminating the need for dynamics simulation or robot hardware, R2R2R enables accessible and74

scalable robot data collection, allowing anyone to contribute by capturing everyday object interactions75

with a smartphone.76

This paper makes three contributions. First, we present Real2Render2Real (R2R2R), a novel frame-77

work that synthesizes diverse, physically grounded observation–action pairs using only smartphone-78

captured videos: a multi-view object scan and a human demonstration video—without requiring79

dynamics simulation or robot hardware. Second, we demonstrate that this data is compatible with80

modern vision-language-action (VLA) and imitation learning policies, including both transformer-81

based and diffusion-based architectures that operate from RGB and proprioceptive input. Third,82

we show that policies trained on one human demonstration-R2R2R-generated data can match the83

performance of those trained on 150 human teleoperation demonstrations, across 1,050 physical robot84

evaluations, while requiring significantly less time to generate.85

2 Related Work86

Robot Data Collection Paradigms. Scaling robot learning has traditionally relied on two paradigms:87

data from industrial deployments and data from human teleoperation. Industrial robot logs [43, 44, 45]88

scale with production throughput but are often task- and embodiment-specific. In contrast, tele-89

operation datasets [46, 47, 48, 49, 50] offer greater visual and task diversity but remain bottle-90

necked by human effort and real-time collection. At the same time, the rise of generalist robot91

policies [16, 19, 51, 17, 18, 20, 21, 22, 23, 24, 25]—capable of performing diverse manipulation92

tasks from raw observations—has amplified the need for scalable, diverse, and high-quality training93

data. Yet the scale of current robot datasets remains orders of magnitude below that of their vision94

and language counterparts [26, 27].95

Procedural Robot Data Generation. To address the challenge of robot data scaling, many works96

have studied procedural data generation to automate robot data collection for pre-defined tasks.97

Many works [52, 53, 54, 55, 56, 57] use pre-defined motion primitives, optionally with a perception98

module, to automate data collection using a real robot, with automatic scene reset. While reducing99

human interventions, they still require robot hardware for data collection, limiting scalability. More100
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Tele-Op
Free

RL
Free

Phys. Engine
Free

Robot
Agnostic

One-to-Many
Trajectories

Articulated
Objects

CASHER [39] ✗ ✗ ✗ ✓ ✓ ✓
RoboVerse [38] ✗ ✗ ✗ ✓ ✗ ✓
RoboGSim [61] ✗ ✓ ✓ ✗ ✗ ✗
RoVi-Aug [62] ✗ ✓ ✓ ✓ ✗ ✓
Video2Policy [37] ✓ ✗ ✗ ✓ ✓ ✓
MimicGen [58] ✗ ✓ ✗ ✓ ✓ ✗
DexMimicGen [63] ✗ ✓ ✗ ✓ ✓ ✗
Phantom [64] ✓ ✓ ✓ ✓ ✗ ✓
DemoGen [65] ✗ ✓ ✓ ✗ ✓ ✗
AR2-D2 [66] ✓ ✓ ✓ ✓ ✗ ✓

Real2Render2Real ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of Robot Data Generation Methods. Real2Render2Real requires no teleoperation,
eliminates reliance on reward engineering, reinforcement learning, or accurate asset physics modeling, and
provides object-centric demonstrations directly extracted from a video where humans interact with the objects. It
also supports various robot embodiments, and generates multiple varied trajectories from a single demonstration.

recently, simulation data generation has emerged as a scalable alternative to real-world collection,101

parallelizing data generation without physical robot hardware. Utilizing the privileged information102

from the simulator, Mahler et al. [10] generates large and diverse data for robot grasping. Katara103

et al. [35], Wang et al. [36] generate large-scale robot data in simulation using reinforcement learning,104

trajectory optimization, and motion planning. Mimicgen [58] synthesizes diverse simulations from a105

single human tele-operation sequence, combining motion planning and trajectory replaying. Despite106

efforts to bridge the sim-to-real gap through domain randomization [59], improved asset and scene107

generation [35, 36], the resulting simulation data often exhibit significant visual discrepancies from108

real-world observations, requiring co-training on real data to enable effective transfer [60].109

Real2Synthetic Data Generation. To mitigate this visual domain gap, some works augment and110

repurpose real RGB data instead of synthesizing it from scratch. For example, Chen et al. [62]111

employs generative models for inpainting robot embodiment features into real images, enabling data112

synthesis for robots with different morphologies. However, such approaches still require human113

teleoperation for initial demonstrations. Further, they lack the ability to generate additional diverse114

trajectories beyond the provided demonstrations. Similarly, Lepert et al. [64], Duan et al. [66] use115

hand-pose tracking to guide inpainted robot end-effector trajectories from human demonstrations.116

While these methods reduce the need for direct teleoperation, they typically generate only a single117

trajectory per video and lack support for computationally-scaled trajectory diversity. In contrast,118

R2R2R can generate multiple, diverse robot trajectory renderings and action rollouts from a single119

human demonstration. Policies trained solely on R2R2R-generated data achieve comparable real-120

world performance with those trained on human teleoperation data.121

Real2Sim2Real Data Generation. To generate diverse trajectories from a single demonstration122

while bridging the sim-to-real gap, many methods follow a Real2Sim2Real paradigm—using real-123

world observations to build simulated environments for policy learning. Prior work [67] shows124

that tuning physics parameters can reduce dynamics mismatch, but large visual domain gaps still125

necessitate test-time perception modules. Recent methods [37, 68, 38, 63] reduce this visual gap126

by constructing digital twins or “digital cousins”[69] from real scans. These approaches vary127

in their reliance on teleoperation, simulation, and trajectory diversity—but many still depend on128

teleoperated demos, handcrafted rewards, or accurate physics models, limiting scalability. For129

example, DexMimicGen[63] uses fixed simulation assets; RoboVerse [38] supports only rigid objects;130

and RialTo [70] and CASHER [39] require manual articulation labeling and reward engineering.131

While Video2Policy [37] avoids reward tuning via vision-language models, it still requires test-time132

object detection due to visual mismatches. These pipelines also rely on physics engines, which133

demand high-fidelity meshes for collision checking and extensive tuning. RoboGsim [61] avoids134

simulation but lacks support for trajectory diversity from a single demo. In contrast, R2R2R addresses135

these limitations by: (1) extracting object trajectories from human videos, (2) segmenting object136
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Figure 3: 3D Gaussian Splat Object Reconstructions with part-level segmentations derived from feature-based
grouping. Objects are reconstructed and segmented into rigid or articulated components using GARField [74].

parts automatically, (3) rendering realistic observations to remove reliance on test-time perception,137

(4) eliminating the need for collision modeling and detailed meshes, and (5) generating diverse138

trajectories from a single demonstration.139

3 Assumptions140

We assume objects are rigid or articulated, and manipulated on a table-top setup under quasistatic141

conditions. Object surfaces are assumed to exhibit low specularity to support robust geometry142

reconstruction and visual feature extraction. We also assume that during human demonstrations,143

objects are not placed in configurations that lead to complete mutual occlusion. Approximate camera144

poses relative to the robot in the physical setup are assumed to be available, enabling the generation145

of observations from nearby viewpoints during data collection. Learned policies take RGB image146

observations and robot’s proprioceptive states as inputs.147

4 Method148

Real2Render2Real (R2R2R) is a data generation pipeline for synthesizing diverse robot demonstration149

data consisting of RGB-action pairs from a single human demonstration and multi-view object scan.150

R2R2R consists of three primary stages: (1) real-to-sim asset and trajectory extraction, where151

rigid or articulated object geometry and part trajectories are extracted from real-world smartphone152

captures; (2) augmentation, where object initialization is randomized and object motion trajectories153

are interpolated if appropriate; and (3) parallelized rendering, where diverse photorealistic robot154

executions are generated using IsaacLab [42], scalable with the amount of available GPU memory155

and the numbers of GPUs.156

4.1 Real-to-Sim Asset Extraction157

We extract 3D object assets from smartphone scans using a two-stage process inspired by [71, 72].158

First, we reconstruct object geometry and appearance using 3D Gaussian Splatting (3DGS) [73],159

then apply GARField [74] to segment the scene into semantically meaningful parts by lifting 2D160

masks into 3D. This enables both object-level and part-level decomposition, including articulated161

components. To support mesh-based rendering, the resulting Gaussian groups are converted into162

textured triangle meshes via an extended version of [75].163

4.2 Real-to-Sim Trajectory Extraction164

Given a smartphone video of a human manipulating the scanned objects, R2R2R extracts the 6-DoF165

part motion of the object and its parts using 4D Differentiable Part Modeling (4D-DPM) introduced166

in [71]. Each 3DGS object part is embedded with pre-trained DINO features, enabling part pose167

optimization through differentiable rendering. We extend [71]’s implementation to track single or168

multiple rigid objects, as well as articulated ones, from demonstration videos.169

While there are many alternative pipelines that convert real images into 3D assets, we adopt 3DGS-to-170

mesh conversion for two key reasons: (1) it enables background–foreground segmentation and part171

decomposition via 3D grouping [74], which is critical for extracting object part-specific trajectories172

from monocular human demonstrations; and (2) it maintains compatibility with both 4D-DPM173
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trajectory reconstruction and mesh-based rendering engines, allowing seamless integration into our174

large-scale rendering pipeline. This process requires no fiducials or hardware beyond a smartphone175

camera, making it well-suited for scalable and accessible real-to-sim data generation.176

Interpolation Methods for Object Trajectory Diversity: A key contribution of Real2Render2Real177

is the ability to synthesize multiple valid 6-DoF object trajectories from a single human178

demonstration. In the case of multiple rigid objects that interact, (e.g. putting a mug179

on a coffee-maker) the original demonstration is valid only for a specific initial object180

configuration, and naively replaying it from a new initial pose would fail. To address181

this, we introduce a suite of trajectory interpolation and resampling techniques that adapt182

the original trajectory to new start and end poses while preserving its semantic intent.183

Figure 4: Trajectory Interpolation –
R2R2R adapts object motion to varied
start/end configurations via spatial normal-
ization and Slerp.

184

We begin with a reference trajectory τ ∈ RT×7 consisting185

of T waypoints provided by the part tracking from the186

demonstration video, each encoding an object orientation187

(quaternion) and position. Given a new initial pose xstart188

and the desired end pose xend from human demonstration,189

we apply a spatial normalization that transforms the original190

trajectory into a canonical space. We compute the affine191

transform between the original and target endpoint poses,192

apply it to the translational component of the trajectory,193

and interpolate keyframe orientations using spherical linear194

interpolation (Slerp). This results in a new trajectory τ ′ that195

begins and ends at the desired poses while respecting the196

structure of the original motion. While these trajectories preserve high-level semantic intent, they197

are generated without explicit collision avoidance and may result in infeasible paths when initialized198

behind occluding objects. To mitigate this, we apply a sampling heuristic that biases the distribution199

of initial placements away from the goal pose (see Fig 4).200

Grasp Pose Sampling: R2R2R estimates 3D hand keypoints from the demonstration video using [76],201

then determines object-hand interactions by computing the Euclidean distance between keypoints202

(index fingertip and thumb) and the centroids of all segmented object parts. This produces a distance203

matrix indexed over time and object parts. We identify the grasped part as the one with the minimum204

aggregate distance across the trajectory, effectively selecting the object most consistently proximal to205

the hand throughout the demonstration. To generate physically plausible grasps, we sample 3DGS206

means to construct a coarser triangle mesh (distinct from the high-resolution rendering mesh), apply207

surface smoothing and decimation to obtain consistent normals, and use an analytic antipodal grasp208

sampler following [10] to determine candidate grasp axes. For bimanual tasks, this process is applied209

independently per hand to infer separate object associations and grasps, supporting coordinated210

actions such as lifting or stabilization.211

Differential Inverse Kinematics: For each grasp and object trajectory pair, we solve a differential212

inverse kinematics problem using JaxMP [77]. The solver computes smooth joint-space trajectories213

that induce the desired object motion across the pre-grasp, grasp, and post-grasp phases. Crucially,214

our method does not require modeling object dynamics or simulating physics interactions. Instead of215

solving for joint torques that would physically induce object movement (as in dynamic simulation),216

we assume the object rigidly follows the trajectory during contact. This kinematic assumption avoids217

challenges like contact modeling, compliance, or friction estimation. The solver simply ensures that218

robot kinematics can track the desired object motion subject to joint position limits, and during pre-219

and post-grasp phases we additionally include smoothness and velocity limits constraints, which220

generates valid grasp approach motions.221

Rendering Diverse Environment Contexts: To improve robustness, we apply extensive domain222

randomization across both scene geometry and rendering parameters. This includes randomized223

lighting conditions (e.g., intensity, color temperature), camera extrinsics (uniformly sampled up to224

2cm translation and 5◦ rotation), and object initial poses (sampled within a workspace-relevant range).225
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(b) Put the mug on the coffee maker
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(d) Open the Drawer
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Figure 5: Physical Experiments Comparing Real2Render2Real to Human Teleoperation Data Efficiency
Task success rate is plotted against data generation time in hours. Solid lines represent performance averaged
across π0-FAST and Diffusion Policy. The Real2Render2Real line (blue square) includes points corresponding
to 50, 100, 150, and 1000 trajectories generated by a single Nvidia RTX 4090. The Human Teleoperation
line (gold square) includes points corresponding to 50, 100, and 150 trajectories. The Real2Render2Real
data generation time includes a 10-minute setup cost, while the Human Teleoperation time is based on the
real trajectory collection time of 150 demonstrations. Exact numbers for evaluation results can be found in
Section 8.1.

By modeling 3D object-centric representations, we can apply these augmentations directly during226

rendering. Changes in camera pose or lighting do not affect the underlying kinematic rollout, allowing227

R2R2R to generate diverse visual contexts from a single demonstration. These augmentations expand228

the data distribution and improve generalization by mitigating the appearance gap and covariate shift229

between synthetic demonstrations and real-world deployment.230

High-Throughput Rendering: IsaacLab [42] supports GPU-parallel execution of multiple envi-231

ronment contexts using tile-based rendering, deep-learning super sampling (DLSS), and mesh asset232

instancing. On a single NVIDIA RTX 4090, R2R2R uses the IsaacLab framework to render complete233

robot demonstrations at an average rate of 51 demonstrations per minute—compared to 1.7 demon-234

strations per minute via human teleoperation—yielding over a 27× speedup. This throughput scales235

linearly with the number of rendering GPUs, as depicted in Figure 2. Data generation/collection time236

per task can be found in Table 7.237

4.3 Policy Learning238

We consider two modern imitation learning architectures: Diffusion Policy [20] and π0-FAST [78].239

We train Diffusion Policy from scratch for 100k steps conditioned on a 4-timestep history of propri-240

oception and 448px RGB observations to iteratively denoise 16 future absolute end-effector poses241

in SE(3). We finetune π0-FAST for 30k steps using Low Rank Adaptation (LoRA) [79] (rank=16),242

which takes a single 224px square image (to match pretraining resolution) and predicts a 10-step243

relative joint angle action-chunk. Training the diffusion policy takes approximately 3 hours on a244

single NVIDIA GH200, while π0-FAST finetuning takes 11 hours. At deployment, both models245

receive raw RGB images and robot proprioception—SE(3) absolute end-effector pose for diffusion246

and joint positions for π0-FAST—and output the corresponding action targets. To improve temporal247

consistency between actions predicted at different timesteps, we apply temporal ensembling [23] to248

predicted action-chunks during execution for both models. More training details can be found in249

Section 8.7.250
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5 Experiments251

We conduct 1,050 physical robot evaluations on an ABB YuMi IRB14000 Bimanual Robot (a robot252

embodiment unseen during π0-FAST pre-training) across five manipulation tasks using the trained253

policies. Policies are trained on either human teleoperation data or synthetic demonstrations generated254

by R2R2R. To assess how policy performance scales with training data, we train models with 50,255

100, 150, and 1,000 rendered trajectories and up to 150 teleoperation trajectories per task. To ensure256

a fair comparison, all models are trained for a fixed number of training steps using only third-person257

RGB observations.258

We deliberately selected tasks to highlight R2R2R’s ability to scale across diverse manipulation259

scenarios that involve varying physical and kinematic structures. Specifically, the tasks span: single-260

object picking (“pick up the toy tiger”), multi-object interaction (“put the mug on the coffee maker”),261

articulated object manipulation (“turn the faucet off” and “open the drawer”), and bimanual coordi-262

nation (“pick up the package with both hands”). These categories correspond directly to R2R2R ’s263

support for part-level segmentation, articulated object reconstruction, and multi-arm grasp planning,264

and are visualized in appendix Sections 8.3.1 to 8.3.5. We provide additional ablation experiments265

on trajectory interpolation (Section 8.2.1), increased background randomization (Section 8.2.2), and266

sim-real co-training (Section 8.2.3) in the appendix.267

5.1 Performance Scaling and Comparison268

To evaluate how well R2R2R-generated data supports policy learning compared to human teleoperated269

data, we analyze performance trends as a function of dataset size across the five tasks described above.270

Results are summarized in Figure 5. We observe that R2R2R-generated data scales predictably with271

dataset size: success rates increase monotonically for most tasks as the number of demonstrations272

grows. On the “Put the mug on the coffee maker” task (see Figure 5b), performance of Diffusion273

Policy trained on R2R2R data improves from 33.3% at 150 demos to 53.3% at 1000 demos, while π0-274

FAST jumps from 33.3% to 80.0%. While higher quality, real-world data offers better performance275

in low-data regimes (e.g., π0-FAST reaches 73.3% at 150 real demos vs. 33.3% at 150 R2R2R276

demos as shown in Figure 5b), as the scale increases to 1000 demos, R2R2R achieves performance277

that matches or surpasses teleoperation across multiple tasks. This suggests that while real data is278

more efficient per demonstration, R2R2R’s generation enables scaling trajectory diversity far beyond279

human throughput, achieving competitive final performance with less collection effort.280

To assess whether this performance is statistically comparable, we conduct formal significance and281

equivalence testing across all tasks and models. Appendix 8.8 shows that on the evaluated tasks,282

there are no statistically significant differences between policies trained on R2R2R versus human283

teleoperation data on the tasks we evaluated. Two One-Sided Tests (TOST) further suggest that284

the observed differences fall within a ±5% margin, indicating similar overall performance. These285

findings suggest that R2R2R may offer a viable and scalable alternative to human teleoperation for286

training effective robot policies.287

6 Conclusion288

We propose R2R2R, a scalable data generation pipeline that creates robot training data from an object289

scan and a human demonstration video. R2R2R mitigates limitations of prior work by removing the290

need for teleoperation, robot hardware, or dynamics simulation. It leverages 3D Gaussian Splatting291

to represent both rigid and articulated objects, enabling parallel rendering using Gaussian-converted292

meshes and scalable rendering engines. These realistic renderings serve as visual observations for293

policy training. Given the robot’s URDF, R2R2R synthesizes diverse robot trajectories with extracted294

object motion from one human demonstration using differential inverse kinematics. Experiments on295

five robotic tasks suggest that policies trained on data generated by R2R2R scale with data volume296

and perform comparably to those trained on teleoperated demonstrations, demonstrating that R2R2R297

is a practical and scalable pipeline for real-world robot dexterous manipulation policy learning.298
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7 Limitations299

Despite its scalability and flexibility, Real2Render2Real (R2R2R) has several limitations. First, due300

to practical constraints, reconstruction methods such as Gaussian Splatting and meshification provide301

high-fidelity appearance models but often lack watertight or physically plausible geometry. As a302

result, R2R2R does not rely on physics simulation. However, physics engines remain valuable for303

modeling complex interaction dynamics, particularly in tasks where contact feedback and interactive304

perception provide critical learning signals—for example, slip detection during grasping or generating305

corrective behaviors. As real-to-sim pipelines such as [80] continue to improve in geometric accuracy306

and physical realism (e.g., modeling surface friction, compliance, and contact properties), future307

iterations of R2R2R could incorporate physics simulation to better support contact-rich manipulation308

tasks.309

Second, while R2R2R generates diverse data through trajectory interpolation, it does not account for310

distractor objects or obstacles that may obstruct the interpolated paths. Integrating motion planning311

to refine trajectories for collision avoidance would be a valuable extension.312

Third, the current pipeline is limited to rigid and articulated objects and does not support deformable313

object manipulation. Additionally, the framework focuses exclusively on prehensile manipulation.314

Non-prehensile actions—such as pushing or in-hand manipulation—likely require more accurate315

metric depth information than monocular depth inference can provide, and may also benefit from316

physics-based modeling.317

Fourth, the grasping module currently relies on antipodal grasp sampling, which limits applicability to318

parallel-jaw grippers. Extending support to multi-fingered or anthropomorphic hands would require319

more expressive contact modeling.320

Finally, object-centric tracking and reconstruction methods remain susceptible to failure under fast321

motion, occlusions, textureless surfaces, or high reflectivity. In such cases, erroneous object tracks322

may lead to physically infeasible trajectories or invalid grasps, ultimately degrading the quality of the323

generated data and the performance of downstream policies.324
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8.1 Raw Evaluation Results344

We report raw task success rates for each policy in Table 2.345

Task / Policy Teleop Trajectories R2R2R Trajectories
50 100 150 50 100 150 1000

Pick up the tiger
Diffusion Policy 6.7% 66.7% 73.3% 0.0% 26.7% 40.0% 66.6%
π0-FAST (Finetuned) 26.7% 40.0% 73.3% 0.0% 0.0% 6.7% 80.0%

Put the mug on the coffee maker
Diffusion Policy 13.3% 33.3% 40.0% 13.3% 13.3% 33.3% 53.3%
π0-FAST (Finetuned) 6.6% 13.3% 73.3% 0.0% 0.0% 33.3% 80.0%

Pick up the package with both hands
Diffusion Policy 66.7% 66.7% 80.0% 20.0% 33.3% 20.0% 73.3%
π0-FAST (Finetuned) 6.7% 46.7% 60.0% 6.6% 13.3% 6.6% 66.7%

Open the drawer
Diffusion Policy 20.0% 60.0% 66.7% 13.3% 33.3% 46.7% 66.7%
π0-FAST (Finetuned) 0.0% 40.0% 60.0% 0.0% 20.0% 13.3% 86.6%

Turn the faucet off
Diffusion Policy 20.0% 46.7% 66.7% 20.0% 33.3% 53.3% 80.0%
π0-FAST (Finetuned) 35.3% 60.0% 80.0% 0.0% 13.3% 13.3% 80.0%

Table 2: Comparison of Physical Policy Success Rates Across Training Sources. Task success rates for
Diffusion Policy and π0-FAST trained exclusively on either human teleoperation data (left) or R2R2R-generated
data (right). Each policy was evaluated on 15 trials per task using a binary success metric: a score of 1 is
assigned for successful task completion, and 0 otherwise.
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8.2 Additional Ablation Experiments346

8.2.1 Trajectory Interpolation347

R2R2R generates diverse trajectories by adapting a single human demonstration to new object poses348

through interpolation and spatial transformation (see Section 4.2 and Figure 4 for visualization). To349

evaluate the impact of this trajectory interpolation step, we ablate it by replaying only the original350

object motion track without adapting to varied initial and goal poses. Table 3 shows a substantial351

drop in performance when interpolation is disabled: on the “Put the mug on the coffee maker” task,352

success rates fall from 80.0% to 0.0% for π0-FAST and from 53.3% to 6.7% for Diffusion Policy.353

This highlights that simply replaying object motion from a single demonstration is insufficient for354

generating transferable robot behaviors—trajectory adaptation is crucial to scaling data diversity in355

object-centric manipulation.356

Policy w/o Trajectory Interpolation (1k) w/ Trajectory Interpolation (1k)

π0-FAST (Finetuned) 0.0% 80.0%
Diffusion Policy 6.7% 53.3%

Table 3: Success rates on “Put the mug on the coffee maker” using R2R2R-generated data with and without
trajectory interpolation (1,000 demos). Interpolation enables adapting object motion to varied contexts, which is
critical for policy generalization.

8.2.2 Background and Tabletop Texture Augmentation357

Our default data generation pipeline includes moderate visual augmentation, such as randomized358

lighting, camera pose, and object placement, as well as sampling from a limited set of lightbox-style359

background environments. To study the effect of stronger visual perturbations, we apply more360

aggressive augmentation that includes a wider variety of lightbox backgrounds and diverse tabletop361

textures (see Figure 6).362

Table 4 reports the success rates on the task Put the mug on the coffee maker under this more363

varied visual setting. We observe a consistent drop in policy performance across both π0-FAST and364

Diffusion Policy when trained on data with aggressive background and surface augmentation. This365

result suggests that while visual diversity is generally beneficial, overly strong appearance pertur-366

bations may harm policy learning when not properly balanced. Future work may investigate more367

principled augmentation schedules or adaptive augmentation strategies to preserve generalization368

while maintaining performance.

Figure 6: Background and Tabletop Texture Augmentation – Each image corresponds to a different
environment.

369
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Policy Less Background Aug. (1k) More Background Aug. (1k)

π0-FAST (Fine-tuned) 73.3% 35.3%
Diffusion Policy 53.3% 33.3%

Table 4: Success rate comparison on Put the mug on the coffee maker with and without background and tabletop
texture augmentation. We generated 1000 trajectories for each setting and evaluated across 15 trials.

8.2.3 Sim-and-Real Co-training370

While sim-and-real co-training is not the main focus of this paper, we included additional results371

comparing policies exclusively on either R2R2R-generated data, human teleoperation data, and372

co-training setup that combines data from both sources. Specifically, for the task Put the mug on373

the coffee maker, we trained a policy using 1,000 R2R2R-generated demonstrations together with374

150 human teleoperation demonstrations. We do not perform additional importance sampling or375

re-weighting of human teleoperation data. For the π0-FAST policy, co-training achieved a success376

rate of 73.3%, which is on par with training using only R2R2R data or only real demonstrations377

individually. Co-training for diffusion policy yields a significant improvement over either real data378

only or R2R2R-generated data only, where the performance improved from 40.0% to 86.7%. We379

hypothesize that since LoRA [79] serves as a significant regularizer for π0-FAST, end-to-end fine-380

tuning with completely unfrozen model with additional hyperparameters tuning could lead to better381

performance. For more in-depth analysis on how co-training can improve policy performance, please382

refer to [60, 81].383

Policy Real Data Only (150) R2R2R Data Only (1k) Co-Training (150+1k)

π0-FAST 73.3% 80.0% 73.3%
Diffusion Policy 40.0% 53.3% 86.7%

Table 5: Success rate comparison on Put the mug on the coffee maker under different training datasets mixtures.
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8.3 Task Visualizations384

Physical policy rollout figures show model input RGB frames from real policy evaluation successes385

using either Diffusion Policy [20] or π0-FAST [78]. The depicted policies were trained exclusively386

on R2R2R synthetic data.387

8.3.1 Put the Mug on the Coffee Maker388

Figure 7: Put the Mug on the Coffee Maker – Demonstration Video Frames.

Figure 8: Put the Mug on the Coffee Maker – Example R2R2R Frames.

Figure 9: Put the Mug on the Coffee Maker – Physical Policy Rollout.
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8.3.2 Turn off the Faucet389

Figure 10: Turn off the Faucet - Demonstration Video Frames.

Figure 11: Turn off the Faucet - Example R2R2R Frames.

Figure 12: Turn off the Faucet - Physical Policy Rollout.

Note: For human teleoperated demonstrations, the teleoperator would push down on the faucet handle390

in a non-prehensile motion to turn it off instead of grasping the handle and twisting it closed as is391

done with R2R2R–where only prehensile grasping is currently supported.392
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8.3.3 Open the Drawer393

Figure 13: Open the Drawer - Demonstration Video Frames. Note: The true video order–and thus the
tracked trajectory–was in reverse, as a full multi-view scan for the inner drawer requires it to first be in an open
configuration.

Figure 14: Open the Drawer - Example R2R2R Frames.

Figure 15: Open the Drawer - Physical Policy Rollout.
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8.3.4 Lift up the Package with Both Hands394

Figure 16: Lift up the Package with Both Hands - Demonstration Video Frames.

Figure 17: Lift up the Package with Both Hands - Example R2R2R Frames.

Figure 18: Lift up the Package with Both Hands - Physical Policy Rollout.
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8.3.5 Pick up the Tiger395

Figure 19: Pick up the Tiger - Demonstration Video Frames.

Figure 20: Pick up the Tiger - Example R2R2R Frames.

Figure 21: Pick up the Tiger - Physical Policy Rollout.
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8.3.6 Put the Mug on the Coffee Maker (Franka Robot Embodiment)396

Figure 22: Put the Mug on the Coffee Maker (Franka Robot) - Example R2R2R Frames.

Figure 23: Put the Mug on the Coffee Maker (Franka Robot) - Physical Policy Rollout.
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8.4 Qualitative Ablations397

Figure 24: Real2Render2Real (Views From Both Cameras Shown). Base augmentations used in the main
R2R2R experiments include: random sphere lighting, camera pose perturbation, robot initial joint perturbation,
and randomized object initialization uniformly distributed via manual parameters.

Figure 25: Trajectory Interpolation Turned Off (Top Camera Views Shown). Note the fixed configuration of
the mug with respect to the coffee maker. With trajectory interpolation off for multiple rigid bodies, we may
only densely follow the tracked trajectories shown in the video demonstration. Without it, the only method
for increasing trajectory diversity would be to augment with part trajectories from adding/tracking additional
demonstration videos.

Figure 26: Random Lighting Augmentation Turned Off (Top Camera Views Shown). We turn off the
randomized sphere light sources with varying colors and intensities. Uniform lighting is available from the only
light source in the render scene – the skybox/dome-light asset.
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8.5 Upfront Processing Time Until Generation398

Task Time to Complete

Scanning 1 min
Demonstration <10 sec
GARField Segmentation [74] 2 min
3DGS Optimization 1 min
4D-DPM Tracking [71] 3 mins
SuGaR [75] Meshification 2 mins
Asset into IsaacLab 1 min

Table 6: Upfront Processing Time per Task Prior to R2R2R Data Generation. Breakdown of one-time
preprocessing steps required to convert a demonstration video and scanned asset into a renderer-ready format for
R2R2R. These steps include segmentation, tracking, meshification, and asset import.

8.6 Data Collection and Generation Time399

Task Teleop, 150 demos, 1 operator R2R2R, 1k demos, 1 GPU

Pick up the tiger 60 mins 26.15 mins
Put the mug on the coffee maker 86 mins 38.22 mins
Pick up the package with both hands 90 mins 13.97 mins
Open the drawer 71 mins 16.95 mins
Turn the faucet off 104 mins 16.67 mins

Table 7: Time taken per task to either collect 150 demos through teleoperation with one human operator or
to generate 1000 synthetic demos with R2R2R. Note: R2R2R generation times do not include the upfront
processing time until generation.
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8.7 Extended Training Details400

We provide hyperparameters for training diffusion policy [20] from scratch and fine-tuning π0-401

FAST [78] with LoRA in Table 8 and Table 9.402

Config Value
optimizer AdamW [82]

base learning rate 2e-4
learning rate schedule cosine decay [83]

batch size 64
weight decay 0.09

optimizer momentum β1, β2 = 0.9, 0.999 [84]
warm up steps [85] 500

total steps 100,000
observation history 4
action dimension 20 (YuMi)

proprio format absolute eef xyz, 6d rotation, absolute gripper position
action format delta eef xyz, 6d rotation, absolute gripper position
action horizon 16

observation resolution 448

Table 8: Diffusion Policy Hyperparameters

Config Value

optimizer AdamW [82]
base learning rate 2.5e-5

learning rate schedule cosine decay [83]
batch size 32

weight decay 0.09
LoRA Rank 16
LoRA Alpha 16

optimizer momentum β1, β2 = 0.9, 0.95 [84]
warm up steps [85] 1000

total steps 30,000
action/proprio dimension 16 (YuMi) 8 (Franka)

proprio format absolute joints positions, absolute gripper position
action format delta joints, absolute gripper position
action horizon 10

observation resolution 224

Table 9: π0-FAST hyperparameters
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8.8 Statistical Comparison Between Teleoperation and R2R2R Data Efficacy403

To evaluate whether R2R2R-generated data yields performance comparable to human teleoperation,404

we apply the Two One-Sided Tests (TOST) procedure across all tasks and policies. Unlike traditional405

significance tests that ask whether two conditions differ, TOST tests whether the difference between406

them is small enough to be considered practically negligible. Specifically, we test whether the absolute407

difference in success rates falls within a ±5% margin—chosen to reflect a practically insignificant408

difference for robot policy success rates.409

As shown in Table 10, no individual task satisfies both conditions required for statistical equivalence410

(i.e., both p-values below 0.05). However, the results consistently show no strong evidence that411

either R2R2R or teleoperation outperforms the other. In particular, the global test across all tasks412

yields one p-value below 0.05 and one above, suggesting performance is similar but not provably413

equivalent under the chosen threshold. These results support the interpretation that R2R2R can match414

the effectiveness of teleoperation across the evaluated tasks, while offering a significantly more415

scalable method for data generation.416

Task Policy TOST lower p TOST upper p

Pick up the toy tiger Diffusion Policy 0.2656 0.5359
π0-FAST (Finetuned) 0.6891 0.1429

Put the mug on the coffee maker Diffusion Policy 0.5349 0.2712
π0-FAST (Finetuned) 0.6891 0.1429

Turn the faucet off Diffusion Policy 0.6891 0.1429
π0-FAST (Finetuned) 0.3729 0.3729

Open the Drawer Diffusion Policy 0.2656 0.5359
π0-FAST (Finetuned) 0.8051 0.0806

Pick up the package with both hands Diffusion Policy 0.1429 0.6891
π0-FAST (Finetuned) 0.3955 0.3955

Overall (All Tasks) – 0.4271 0.0497

Table 10: Equivalence testing (TOST) between human teleoperation (150 trajectories) and R2R2R-
generated data (1,000 trajectories). We report the p-values from Two One-Sided Tests (TOST) applied to each
task and policy, using a ±5% success rate margin as the equivalence threshold. The “lower p” tests whether
R2R2R performs no worse than teleoperation by more than 5%, while the “upper p” tests whether teleoperation
performs no worse than R2R2R. Statistical equivalence is only confirmed when both p-values fall below 0.05.
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