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Abstract— Art and sculpture convey human creativity; rep-
resentational and abstract forms date back over 30,000 years.
In this project, we explore how a large Vision Language Model
(VLM) can be used to generate novel 3D sculptural composi-
tions and specifically whether VLMs can design recognizable
representational sculptures using a limited set of physical
components. In a recent paper accepted to ICRA 2025 [1],
we formalize Generative Design-for-Robot-Assembly (GDfRA):
given a natural language prompt (e.g., “giraffe”) and an image
of available parts, the task is to generate a spatial assembly that
visually resembles the prompt. In this paper, we apply Blox-
Net to the task of generative sculptural assembly, exploring
its ability to interpret and recreate iconic works of art. In
particular, we examine three case studies: Frédéric Auguste
Bartholdi’s Statue of Liberty, Auguste Rodin’s The Thinker,
Tony Smith’s Cigarette, and Christo and Jeanne-Claude’s The
Gates.

I. INTRODUCTION

Art and technology have been linked throughout human
history, from the earliest representational sculptures carved
over 30,000 years ago to contemporary pieces. Sculpture
transitioned from strict realism to impressionism, abstrac-
tion, symbolism, and conceptualism. Concurrently, recent
advancements in artificial intelligence have shown that Vi-
sion Language Models (VLMs) can recognize images of art
historical paintings and sculptures, describe complex scenes,
and even generate new compositions that blur the boundaries
between human and machine creativity.

In a paper accepted to ICRA 2025 [1], we introduced
Blox-Net–a novel system capable of making creative deci-
sions in the Design for Robot Assembly (DfRA) process.
Unlike traditional DfRA systems that require human de-
signers in the loop [2–4], Blox-Net autonomously designs
recognizable sculptural forms using a limited set of physical
building blocks, and assembles them with a 6-DoF robot arm
equipped with a suction gripper. In this paper, we apply Blox-
Net to the task of generative sculptural assembly, exploring
its ability to interpret and recreate 4 iconic works of art.

Recent advances in Generative AI systems have demon-
strated remarkable abilities to create novel texts, code, and
images [5–7]. Researchers are actively exploring “text-to-
video” [8–10] and “text-to-3D” [11–13] systems, where the

1The AUTOLab at UC Berkeley, 2Cornell University
Emails: {kavish kondap, andybass, elleohill,

palomaraffle, apgoldberg, ethantqiu, zehanma,
max.fu.letian, justin kerr, huangr, kych,
goldberg}@berkeley.edu, {kuanfang}@cornell.edu

AUTOLab Website: https://autolab.berkeley.edu/

Fig. 1: We apply Blox-Net to the task of generating block-based
renditions of famous sculptures, such as ‘The Thinker’.

latter generates 3D mesh structures from textual descriptions
(and there are ongoing research efforts applying Gen AI for
eCAD design of chips [14]). This suggests that Generative
AI may have potential for DfRA, and that, if coupled with
a physical robot, it may be possible in certain cases to fully
automate the design cycle.

Blox-Net, a fully-implemented generative DfRA (GDfRA)
system, utilizes the semantic planning and text generation
capabilities of large language models (LLM) with physical
analysis from a simulator. Blox-Net operates in three phases:
1) A customized iterative prompting process uses a vision
language model (VLM) to design feasible 3D arrangements
of available components—assemblies—that approximate the
shape of a desired object (eg ”giraffe”); 2) The proposed
assemblies are tested in simulation to assess their physical
constructability by a robot. Perturbation analysis identifies
weaknesses, and revises a selected assembly as needed. 3)
Using computer vision and motion planning a physical robot
with a camera repeatedly builds a selected assembly, auto-
matically resetting between trials. This process automatically
evaluates the reliability of the physical construction.

We study how Blox-Net engages with artworks that
embody complex cultural and emotional significance. In
particular, we examine four case studies: Frédéric Auguste
Bartholdi’s Statue of Liberty, Auguste Rodin’s The Thinker,
Tony Smith’s Cigarette, and Christo and Jeanne-Claude’s
The Gates. Each presents unique challenges for abstraction,
embodiment, and narrative retention in a robotic system
constrained by discrete, geometric building blocks.
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These case studies raise broader questions at the intersec-
tion of art, robotics, and AI: How do machines reinterpret
human creativity under physical and algorithmic constraints?
What is lost, transformed, or revealed in the process of
translation?

II. RELATED WORK

A. Design for Robot Assembly

The concept of Design for Assembly (DfA) was pioneered
by Geoffrey Boothroyd and Peter Dewhurst in the early
1980s [15], with Hitachi developing its Assemblability Eval-
uation Method (AEM) in 1986 [16]. These seminal works
laid the foundation for systematic approaches that follow
product design guidelines [17] facilitate facilitate efficient
assembly processes. As robotics automation in manufactur-
ing became prevalent, Design for Robot Assembly (DfRA)
emerged as an extension of DfA principles, specifically
addressing the unique capabilities and limitations of robotic
systems in assembly tasks [18, 19].

Design for Robot Assembly (DfRA) [18, 20–22] has
evolved significantly with the advent of Computer-Aided
Design (CAD) and Computer-Aided Manufacturing (CAM)
software, which expedite design and evaluation of compo-
nents and assemblies using Finite Element Methods and
perturbation analysis [2–4, 23, 24]. While these tools facil-
itate visualization and analysis of tolerances, stresses, and
forces, all existing DfRA systems require extensive human
input [2–4]. A persistent challenge in DfRA is accurately
modeling assembly reliability, given the inherent uncertain-
ties in perception, control, and physics [25–30]. Simulation
can partially address this, but struggles to capture 3D defor-
mations and collisions crucial to robot grasping, necessitating
iterative real-world testing and redesign [31–36]. Recent
advancements leverage large language models (LLMs) [6,
37] for various aspects of design, including task planning,
robot code generation [38, 39], engineering documentation
understanding [40], and generating planar layouts or CAD
models [14, 41–43]. However, these methods primarily focus
on determining assembly sequences for fixed designs. In
contrast, we tackle both the design and execution aspects of
robot assembly, aiming to create physically feasible designs
for robotic assembly with minimal human supervision.

B. Text-to-Shape Generation

Semantic generation of 3D shapes and structures is a
long-standing problem in computer vision and computer
graphics [44]. Deep generative models have enabled a wide
range of approaches that learn to capture the distribution
of realistic 3D shapes, in the format of voxel maps [45],
meshes [46], point clouds [47], sign distance functions [48],
CAD models [49], and implicit representations [50]. A
growing number of approaches have also been proposed to
generate objects and environments to create digital twins or
curricula for robotic control and scale up learning [51–58].
With the advances of aligned text-image representations and
vision-language models, an increasing number of works have
aimed to generate semantically meaningful shapes specified

by natural language instructions [11, 59–61]. Unlike these
methods, Blox-Net generates 3D shapes using only the
available physical building blocks by prompting an LLM
(ChatGPT 4o [62]) to generate a plan to assemble the blocks
into the desired shape.

C. Art and Generative AI

Advances in generative models have enabled artists to
integrate AI into creative workflows. AI systems can assist
traditional artistic practices and create new forms of gen-
erative, autonomous, and interactive art. Tools like DALL-
E [63], Midjourney, and Sora [64] allow users to generate
images, animations, and environments from natural language
prompts. Several notable artworks have deployed robots as
fabricators, performers, or autonomous agents in galleries
and public spaces. Catie Cuan choreographs and performs
alongside robotic systems, exploring the interaction between
human movement and machine autonomy [65]. Sun Yuan and
Peng Yu’s Can’t Help Myself at the Guggenheim used a large
industrial robot tasked with a futile, repetitive cleaning task,
to produce commentary on labor, control, and autonomy [66].
Patrick Tresset builds semi-autonomous robots that mimic
human drawing behavior, prompting reflection on whether
artistic value lies in creating these automatons or in the
resulting drawings [67]. AI technologies have been employed
by artists in a variety of contexts to create immersive and
visual works that explore our evolving relationship between
data and material form. Refik Anadol creates AI-generated
data sculptures and immersive environments, processing
massive datasets into machine-driven aesthetic experiences
[68].

III. GDFRA PROBLEM

Generative Design for Robot Assembly (GDfRA) con-
siders the design of a 3D structure that can be assembled
with an industrial robot arm (see Figure 1). The input is a
word or phrase (e.g., “bridge”) and an image of available
components for assembly. The objective of a GDfRA system
is to design an assembly that is (1) ”recognizable”, meaning
the assembly visually resembles the provided text input and
(2) ”constructible” from a given set of minimalist blocks.

IV. METHOD

We utilize Blox-Net, a GDfRA system that assumes (1)
components are cuboids and cylinders and (2) components
are lying in stable poses within a reachable planar area.

Blox-Net includes three phases. In phase I (Figure 2),
Blox-Net prompts a VLM (GPT-4o [62]) to generate multiple
assembly designs, from which the VLM selects the top
candidate based on stability and visual fidelity. In phase II,
the chosen assembly design undergoes an iterative refinement
process in a customized physics simulator. This simulation-
based approach applies controlled perturbations to enhance
the design’s constructability while maintaining its core char-
acteristics. Phase II and phase III are not used in this work.
In phase III, Blox-Net utilizes a robot arm equipped with a
wrist-mounted stereo camera and suction gripper to construct



Fig. 2: Case Study Generations: From left to right: Statue of Liberty by Frédéric Auguste Bartholdi, The Thinker by Auguste Rodin,
Cigarette by Tony Smith, and The Gates by Christo and Jeanne-Claude. For each artwork, the original sculpture is shown alongside the
Blox-Net interpretation.

the optimized design using 3D printed blocks. The assembly
is constructed on a tilt plate, which the robot actuates to
automatically reset the blocks back into a tray.

V. CASE STUDIES

Artists have continually redefined sculpture by embracing
new tools, materials, and techniques. Today, AI and robotic
systems introduces unprecedented possibilities into this on-
going evolution, challenging our understanding of creativity,
interpretation, and authorship. By reconstructing renowned
sculptures using Blox-Net, we explore how familiar forms
can be reimagined through the lens of algorithmic design and
robotic assembly. In the following section, we examine four
iconic works—Frédéric Auguste Bartholdi’s Statue of Lib-
erty, Auguste Rodin’s The Thinker, Tony Smith’s Cigarette,
and Christo and Jeanne-Claude’s The Gates—to explore how
Blox-Net reshapes both the aesthetic qualities and cultural
meanings of historically significant sculptures in the context
of emerging technologies.

A. Statue of Liberty - Frédéric Auguste Bartholdi, 1876

The Statue of Liberty, designed by Frédéric Auguste
Bartholdi and gifted by France to the U.S. in 1886, has
endured as one of the most charged symbols in American
visual culture. From the torch she holds to the broken chains
below her robe, the monument was built to both welcome im-
migrants and declare a national ideal of refuge and freedom
[69]. Over time, artists have reimagined the statue to engage
with and question that ideal. Andy Warhol’s 1986 Statue
of Liberty series turns her into a pop symbol, repeating its
image in layered ghost tones [70], while JR’s Inside Out:
Ellis Island overlays the statue’s pedestal with immigrant
faces, grounding abstraction in lived experience [71]. Today,
the statue is found in augmented reality filters, AI image
generators, and viral media—its presence is preserved, yet
its meaning is increasingly fractured. These reinterpretations
mirror a broader cultural shift: the transformation of complex
political symbols into consumable visuals, inviting reflection
on what is remembered, what is erased, and what remains
remixable [72].

Blox-Net’s minimalist reconstruction of the Statue of
Liberty continues this trend. In its rendering of the Statue
of Liberty, small details fall away. The spiked crown be-
comes a flat green plane. The raised arm is reduced to a
vertical column. A golden hemisphere, loosely referencing
the torch, sits atop a minimalist frame. While the form
signals the statue’s identity, it also flattens its meaning.
What remains is a stylized echo of the statue, stripped
of the emotional and historical density that once made
it monumental. Yet this simplification is the point. Blox-
Net’s version, assembled from data scraped from billions
of inputs, becomes a mirror of society’s own abstractions.
When it rebuilds the Statue of Liberty, it compiles what
we’ve culturally encoded: a structure recognized globally but
often emptied of its original political meaning. Speculative
renderings by models like DALL·E [63]—where Liberty is
imagined underwater, made of candy, or transplanted into
dystopian cityscapes—underscore this trend toward stylized,
low-resolution symbolism. Like other digital representations,
it reveals how contemporary society trivializes complexity,
turning the ongoing story of immigration into a caricature
of “welcome” while real borders harden and debates polar-
ize. Blox-Net’s Statue of Liberty becomes both object and
critique, a minimalist artifact reflecting our current political
upheaval.

B. The Thinker - Rodin, 1880

First conceived in 1880 and recast numerous times in
bronze due to its popularity, Auguste Rodin’s The Thinker
quickly became a universal symbol of human cognition. Dur-
ing the time of The Thinker’s creation, Western philosophy
and art had long separated the mind from the body [73].
Intelligence was seen as elite, exclusive, and disembodied.
Moreover, the late 1800s were the height of industrialization.
Rodin prioritized hand labor and outwardly criticized works
“created by means of industry rather than by art,” claiming
they “do not withstand the march of time” [74]. As human
labor was increasingly mechanized, the human body was
both glorified in nationalist propaganda and dehumanized by
factory work.



Fig. 3: Additional Blox-Net Sculptures: Blox-Net’s interpretations of recognizable artworks and architecture.

Influenced by Romanticism and an emerging focus on
the individual psyche, Rodin’s innovation lay in making the
body a language of its own. Whereas classical sculpture
idealized the human form, Rodin was interested in its raw
specificity [73]. Rodin himself explained, “what makes my
Thinker think is that he thinks not only with his brain, with
his knitted brow, his distended nostrils and compressed lips,
but with every muscle of his arms, back, and legs, with his
clenched fist and gripping toes” [75]. By emphasizing the
physicality of thought, Rodin reclaims the human body as a
site of meaning, emotion, and intelligence. One newspaper
of the time wrote that the statue represented “the ordinary
workman, anonymous, unknown,” elevated to the level of
“the egalitarian society” [76]. Rodin’s The Thinker posi-
tioned intellectual depth not as the privilege of elites, but
as a universal human trait.

Given only 21 blocks, Blox-Net reconstructs The Thinker
and strips away the immense detail that Rodin used to
democratize the labor of intelligence. It reduces the intri-
cate form to a minimalist homage, acknowledging how AI
reduces thinking to a disembodied and abstract process.

This version of The Thinker also shows how AI allows
anyone to create sculptural forms. Where traditional sculp-
ture demands immense skill, time, and physical labor, new
technologies allow broader participation in both art and
intellectual expression. This tension between embodiment
and abstraction defines our new era of art, AI, and robotics.
Ultimately, Blox-Net’s Thinker reflects what we gain and
what we sacrifice in separating thinking from the human
body. As the nature of thought evolves with technology,
Rodin’s universal pose of thinking endures as a powerful
symbol of human intelligence and reflection.

C. Cigarette - Tony Smith, 1961

Tony Smith began his creative life as an architect, studying
under Frank Lloyd Wright and designing over twenty private
homes before turning to sculpture in the early 1960s [77–79].
His approach to space and structure was shaped not only by

formal training but also by personal experience. As a child,
he lived in isolation due to tuberculosis in a prefabricated
hut built by his father [77, 79]. These early experiences with
confinement, modular construction, and solitude later echoed
through his sculptural vocabulary. When he began working
in three dimensions, Smith rejected the traditional language
of sculpture and described his works as “presences,” forms
that asserted themselves in space with quiet, psychological
intensity [77].

A pivotal moment in Smith’s transformation came in
1951 during a night drive down the unfinished New Jersey
Turnpike. The road, unmarked and unlit, was surrounded by
industrial structures and open darkness. Smith later described
this environment as “a reality not yet aestheticized” [77].
This experience revealed the possibility of form without
interpretation, of physical presence stripped of symbolic
narrative. From that point forward, Smith sought to create
works that embodied structure, volume, and void without
relying on ornament or traditional meaning. Using steel,
plywood, and automotive paint, Smith helped define postwar
Minimalism while infusing it with interiority and unresolved
mystery [78, 79].

Tony Smith’s Cigarette sculpture (1961) is a memento-
mori that captures this cultural shift not through narrative
but through form. It is a bent triangular black steel tube,
monumental in scale yet conceptually abject [80]. Smith
described the piece as “a Cigarette from which one puff had
been taken before it was ground in the ashtray” [77].

Blox-Net’s reconstruction of Cigarette invites reflection
on how AI may reframe cultural beliefs about mortality. Re-
building Cigarette with uniform blocks strips away the quiet
decay and physical subtlety that Tony Smith intended in the
original form. It reduces the nuanced gesture of monumental
discard into a series of simplified blocks, assembled based
on algorithmic priorities of stability and recognizability.

Smith’s original sculpture captured the aftermath of smok-
ing, a consumption, a physical presence laden with traces



of human use and abandonment. Like the skulls and extin-
guished candles of vanitas paintings, Cigarette serves as a
formal reminder of mortality, presenting death not through
narrative but through lingering presence. Algorithms that
cannot die recreate forms to remind us that we do. Artificial
intelligence cannot grieve, but it can emulate the structural
logic of grief as envisioned by Tony Smith. As Blox-Net
reconstructs Cigarette, it points to the hopes of machine
immortality.

D. The Gates – Christo and Jeanne-Claude, 2005

The Gates, created by Christo and Jeanne-Claude in Febru-
ary 2005, remains one of the most ambitious ephemeral
art installations ever constructed [81]. Spanning 23 miles
of walkways in Central Park, it consisted of 7,503 free-
hanging saffron fabric panels attached to vinyl gates. Though
visually monumental, the installation lasted only sixteen
days before all materials were dismantled and recycled.
This impermanence was a hallmark of Christo and Jeanne-
Claude’s work, as they use the temporary nature of the
projects “to endow the works of art with a feeling of urgency
to be seen, and the love and tenderness brought by the fact
that they will not last” [82].

In a cultural moment obsessed with permanence and
archives, The Gates asked people to show up, move through,
and let go. This focus on presence, temporality, and envi-
ronment made the experience deeply human. But in a digital
age, these qualities are being reinterpreted through new tools.
Projects like The Shed’s AR overlays of The Gates [83] and
open-source 3D-printed miniatures on platforms like Thingi-
verse allow for re-engagement with the piece far beyond its
lifespan. Blox-Net continues this trajectory—rendering The
Gates as bright orange modular blocks assembled into arch-
like structures. These reinterpretations cannot replicate the
tactile, participatory richness of the original, but they enable
new access points. This marks the “democratization of cre-
ativity”—transforming large-scale, permission-based public
works into something reproducible, scalable, and globally
shareable.

Recreating The Gates through Blox-Net raises new ques-
tions about how advanced machine learning models inter-
pret ephemeral, fluid works. While The Thinker by Rodin
grapples with anatomical specificity and emotional intensity,
The Gates tests whether a generative AI system can convey
“transience” or “flow” using static, rigid blocks. In the Blox-
Net renditions, the saffron sheets become flat rectangular
blocks or open gaps, and the sense of windblown fabric is re-
duced to simplified geometric frames. This formal reduction
recalls the work of Minimalist sculptors like Donald Judd,
whose Untitled (Stack) (1967) [84] repeats industrial units
to emphasize structure over narrative, or Carl Andre’s Lever
(1966) [85], which lays 137 firebricks in a line to challenge
the boundary between art and floor.

In this context, minimalism becomes metaphor: Blox-Net’s
geometric translation reflects how our culture tends to distill
complexity into structure, flattening participatory experiences
into consumable forms. However, the real critique is not of

the AI. Blox-Net does not erase meaning—it reveals what
society has already streamlined. Its outputs mirror the ways
we already reduce civic discourse to slogans, protest to
hashtags, and migration to policy soundbites. As D. Maria-
Reina notes, the original Gates relied on impermanence
to create urgency and tenderness; what happens when we
recreate it endlessly and easily?

And yet, this very accessibility is also where AI’s po-
tential lies. Systems like Blox-Net contribute to the “de-
mocratization of creativity”—lowering barriers for partic-
ipation, making once-temporary installations available to
students, educators, and independent creators. Projects like
3D-printable mini-Gates on Thingiverse or speculative AI-
generated versions using DALL·E show how open tools
can carry forward the form, rhythm, and visual logic of
the original work, even if the wind and crowd are absent
[86]. Blox-Net’s rendition of the Gates reassemble a site-
specific moment into something portable and shareable, not
to diminish its meaning, but to invite us to examine what we
choose to replicate, what we let go, and what our abstractions
say about us.

VI. DISCUSSION AND CONCLUSION

The results from Blox-Net prompt broader questions about
the nature of creativity, authorship, and artistic expression
in an age increasingly shaped by AI and robotics. What
does it mean for a machine to “create” art? Traditional
conceptions of art emphasize intention, emotion, and indi-
vidual perspective. In contrast, Blox-Net generates sculp-
tures by sampling from distributions, optimizing for sta-
bility and recognizability under physical constraints. While
it lacks consciousness or subjective experience, Blox-Net’s
outputs meaningful interpretations, can be the subject of
case studies. One intriguing direction is the evolution of

Fig. 4: GPT Image 1 Generations: Images generated using
OpenAI’s image generation model. The model was prompted with a
modified version of the Blox-Net input. Note that these generations
do not adhere to the provided blockset and don’t account for
gravitational stability.



style. Human artists often develop distinct personal styles
shaped by influences, experiences, and evolving sensibilities
over time. Could future VLM-driven systems like Blox-
Net similarly evolve stylistic signatures? Current models
primarily optimize for task performance, but incorporating
objectives related to aesthetic variation, historical styles,
or novel formal experimentation could enable systems to
develop novel “machine styles”.

Furthermore, today’s Blox-Net assemblies prioritize struc-
tural recognizability. Yet art is not solely about form; it
often carries emotional weight, narrative layers, or sociopo-
litical critique. Could future VLM-robot systems generate
conceptual sculptures that intentionally convey emotions or
tell stories? Embedding narrative logic or affective resonance
into generative design processes represents a significant
but exciting challenge, demanding richer models of human
perception, symbolism, and context.

The broader implications of this work touch on funda-
mental questions of authorship and collaboration. Who is the
true “creator” of a Blox-Net sculpture: the human engineers
who built the system, the vision-language model (VLM) that
synthesized the structure, the robot that assembled it, or
the cultural corpus that trained the model? Notably, because
the Blox-Net sculptures were generated through a GDfRA
pipeline, their forms were inherently constrained by the
limitations of the target robotic construction technologies.
Given a similar prompt, GPT Image 1 [87] produces a more
detailed and recognizable version of the figure (Fig. 4), albeit
deviating from the provided set of blocks and including over-
hanging components. These results suggest that as robotic
construction capabilities continue to evolve alongside AI, it
will become possible to realize increasingly complex and
expressive forms. Future work will investigate how to ground
image generation models with physical constraints, enabling
new, imaginative AI-driven interpretations of art that remain
feasible for real-world, robotic construction. Such human-
machine collaboration could catalyze new forms of artistic
production, where humans articulate high-level intentions or
emotional objectives and AI-robotic systems traverse vast
design spaces to propose novel and unexpected realizations.

Ultimately, Blox-Net suggests that creativity is not con-
fined to human minds but can emerge from the interplay
of algorithms, materials, and embodied action. As AI and
robotics continue to evolve, new hybrid modes of creation
will arise—challenging us to expand our definitions of art,
authorship, and imagination.
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