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Abstract— Tracking and manipulating irregularly-shaped,
previously unseen objects in dynamic environments is important
for robotic applications in manufacturing, assembly, and logistics.
Recently introduced Gaussian Splats [1] efficiently model
object geometry, but lack persistent state estimation for task-
oriented manipulation. We present Persistent Object Gaussian
Splat (POGS), a system that embeds semantics, self-supervised
visual features, and object grouping features into a compact
representation that can be continuously updated to estimate the
pose of scanned objects. POGS updates object states without
requiring expensive rescanning or prior CAD models of objects.
After an initial multi-view scene capture and training phase,
POGS uses a single stereo camera to integrate depth estimates
along with self-supervised vision encoder features for object
pose estimation. POGS supports grasping, reorientation, and
natural language-driven manipulation by refining object pose
estimates, facilitating sequential object reset operations with
human-induced object perturbations and tool servoing, where
robots recover tool pose despite tool perturbations of up to 30°.
POGS achieves up to 12 consecutive successful object resets
and recovers from 80% of in-grasp tool perturbations.

I . I N T R O D U C T I O N

In environments like factories, workshops, or homes, robots
must not only successfully identify and manipulate objects
but also adapt to changes in object pose over time. The
challenge is greater when dealing with irregularly shaped
objects for which obtaining an accurate Computer-Aided
Design (CAD) model is impractical. While any physical
object can in principle be CAD-modeled, this process is often
labor-intensive and may require reaching out to manufacturers
or purchasing specialized scanning equipment. Approaches
that rely on predefined CAD models struggle in scenarios
where such models are unavailable, limiting adaptability
to previously unseen objects [2–4]. Traditional and deep
RGBD or point cloud object tracking methods are attractive
as components of state estimators for robotic manipulation
because they do not require predefined meshes or CAD
models [5, 6]. However, many of these approaches fail to
effectively integrate geometric information across multiple
object viewpoints or timesteps, and do not address the
estimation or reconstruction of occluded object regions based
on prior information. As a result, they struggle to maintain a
persistent and holistic object representation over time.
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Fig. 1: Autonomous Object Manipulation and Tracking with POGS
Unified Representation (Top) A robot autonomously performs a pick and
place primitive to move the shoe onto a shoebox given input natural language
pick query ”shoe” and place query ”shoebox”. (Bottom) A POGS unified
representation enables language querying, grasp sampling, and continuous
tracking of irregular objects as they move.

Implicit 3D representations like NeRFs [7] offer high-
quality scene reconstructions but are ill-suited as a represen-
tation for dynamic scenes where objects may be moved and
re-oriented. Recently, Gaussian Splatting [1] was introduced to
create high quality 3D reconstructions by explicitly modeling
scenes as a set of 3D gaussians that can be partitioned to
allow rigid transforms on object-level clusters.

To enable online state estimation, tracking, and manipula-
tion of unseen objects in dynamic environments, we present
Persistent Object Gaussian Splat (POGS), an editable object-
centric feature field representation with embedded language
features, self-supervised visual features, and object-level
grouping features to support robot manipulation. POGS uses
3D Gaussian Splatting (3DGS) to model full 3D geometry
of irregular objects, allowing for continuous updates as the
scene evolves.

https://berkeleyautomation.github.io/POGS


Fig. 2: POGS Pipeline After capturing multiple images of a scene using a robot wrist-mounted ZED mini, POGS segments objects using Detic, extracts
DINO features, and embeds language through CLIP. Training images are used to optimize a 3DGS, and features extracted from 2D foundation models are
distilled into feature fields, producing our POGS unified representation. During robot object reset and tool servoing, the POGS is updated based on depth
geometry and DINO tracking features.

By embedding features from encoders and detectors pre-
trained on internet-scale datasets such as CLIP [8], DINO [9],
and Detic [10], POGS can respond to open-vocabulary natural
language queries and also identify, track, and manipulate
objects even without any predefined models. As such objects
are moved by humans or robots, POGS can update their state
online, allowing for flexible, multi-step tasks that require
continuous interaction with dynamic objects, eliminating
the need to re-scan the environment. This paper makes the
following contributions:

• Persistent Object Gaussian Splat (POGS), a novel
feature field representation for tracking and manipulating
previously unseen irregularly shaped objects.

• A robot system for creating and using POGS to perform
object-reset and tool servoing tasks.

• Physical robot experiments on object reset with an
average pose error of 2.92 cm.

• Physical robot experiments for tool servoing where
targets are moved up to 30° and the tool can recover
from human perturbations 80% of the time.

I I . R E L AT E D W O R K

A. Feature Fields for Robotics

Recent advances in foundation vision models such as CLIP
[8] and DINO [9] have enabled many methods that perform
robot manipulation from visual features. Works [11–17] have
used CLIP with point-based fusion methods to build open-
vocabulary 3D representations. However, visual occlusion and
multi-view pose misalignment can hinder consistent semantic
fusion across the 3D scene.

To address this, more recent approaches such as DFF [18]
and LERF [19] have proposed distilling learned features
into neural radiance fields (NeRFs) [7] by aggregating
information across multiple views and scales. F3RM [20]
and LERF-TOGO [21] extend these works respectively for

robot manipulation. However, NeRF-based representations
are limited by NeRF’s training speed and implicit spatial
representation, making it impossible to update when objects
move without further scene-scale optimization. Works like
Dex-NeRF [22] and Evo-nerf [23] attempt to address this by
partially re-scanning scenes to account for object movement;
however, this process remains computationally intensive,
limiting its suitability for online updates.

An alternative to NeRF is Gaussian Splatting [1], which
models scenes using explicit 3D Gaussian primitives, enabling
faster training and rendering while maintaining high fidelity
in 3D reconstructions. Recent works [24–27] have shown that
Gaussian Splatting can also integrate semantic and grouping
features. GaussianGrasper [28] extends these approaches to
robotic manipulation by updating the scene representation
after objects are moved, using the robot end-effector pick-
and-place transform followed by a few views to fine-tune the
Gaussian Splat. In this work, we develop a method capable of
updating the scene where a human can also move the objects
repeatedly without any partial re-scans of the scene.

B. Object Tracking for Manipulation

Object pose estimation networks [29–32] are able to track
the 6DOF pose of an object of interest, but typically not
multiple objects at once in a scene without scaling compute
requirements. Using Gaussian Splatting, several works [33–
35] collect image data from one or multiple views over time
for rendering dynamic scenes. However, these works focus on
offline processing and pose interpolation rather than tracking
and estimating object states online for manipulation tasks.
Keypoint-based approaches [36–39] model multiple objects
in a scene as a set of keypoints. However, these methods are
prone to tracking errors when objects rotate and keypoints
become occluded. Some approaches [40, 41] use multi-camera
setups to help mitigate these issues. Our approach aims to
achieve robust online object tracking and scene updating with



a single stereo camera.

C. Editable 3D Feature Fields

Concurrently, other works develop editable 3D feature
fields. GaussianGrasper [28] and Splat-Mover [42], allow
Gaussian splat updates based on known robot end-effector
movements. However, they assume robot-only object interac-
tions whereas POGS can also track human object interactions.
Object-Centric Gaussian Splats [43] and GraspSplats [44]
improve tracking but rely on static backgrounds or multi-
camera systems. Robot See Robot Do [45] tracks part-
level objects using monocular video, though only in an
offline processing setting for zero-shot motion planning robot
imitation from human demonstration. We extend this work
to support online rigid multi-object tracking along with the
aforementioned semantic and object-centric feature fields to
create a unified 3D scene representation for zero-shot robotic
manipulation.

I I I . P R O B L E M S TAT E M E N T

We consider a tabletop setting with irregular objects,
defined as objects for which we do not have a detailed
geometric (CAD) model. Given a single stereo camera, the
objective is to track the 6D pose of each object over time
and update the 3D scene models. We make the following
assumptions:

1) Each object is rigid, simplifying the tracking to estimate
rigid transforms from RGBD frames.

2) There exists an initial scanning phase in which all objects
are static. However, at the start of tracking, objects can
be in different poses within 90°and 25 cm of their initial
scan pose.

3) All object surfaces are represented in POGS training
views–with the exception of object surfaces in contact
with the tabletop.

4) The scene is well-lit with approximately uniform lighting
and minimal shadowing.

5) During object tracking, objects are not placed in config-
urations where they fully occlude each other.

6) Object surfaces exhibit low specularity for more robust
geometry reconstruction and visual feature extraction.

We evaluate POGS with 2 types of robot experiments:
object-reset and tool servoing.

The goal of the object-reset experiment is to use natural
language to query for an object to grasp and another query for
where the grasped object will be placed. After each object
reset, a human will randomly reconfigure both objects to
different poses and the process is repeated until failure. We
evaluate this experiment by recording the maximum number
of sequential object resets before failure, the object grasp
rate, the object place rate, and the object translation error in
placement.

In tool servoing, the objective is for the robot to contin-
uously align a grasped tool with a target, even as a human
operator moves the target and alters the tool’s orientation
within the robot’s grip. We evaluate this experiment by

recording the success rate and average time taken to recover
from in-grasp tool perturbations.

I V. M E T H O D

The POGS system has 3 phases:
1) Scene Capture phase to obtain a set of images of a

novel environment in a multi-view manner, maximizing
different perspectives on objects of interest.

2) Training phase for aggregating and distilling information
from captured views into a unified POGS representation.

3) Persistent Object Tracking phase for online tracking
and updating of object poses as they move through the
workspace from human or robot manipulation.

A. Scene Capture

The initial scene is scanned using an RGBD ZED Mini
stereo camera mounted on a UR5 robot end effector. We
capture images from 35 views as the robot moves along a
predefined trajectory around the workspace to have sufficient
viewpoints. Depth images are obtained from stereo pairs with
RAFT-Stereo inference [46], which are deprojected into a
fused pointcloud and used for initializing the Gaussian Splat.
We run DBSCAN [47] on the fused pointcloud to filter noise
and floater points.

B. Gaussian Splatting with Feature Fields

The goal of the training phase is to fuse information from
the collected multi-view images and generate the unified 3D
representation POGS for all objects in the scene. Rendering
and supervising color for POGS remains exactly the same as
3DGS. We additionally regularize the 3D geometry with a
depth reconstruction objective to encourage Gaussian means
to be positioned on object surfaces [48]. We employ feature
rendering techniques [20, 25] to simultaneously distill useful
latent and explicit features from the 2D images into the 3DGS.
In particular, we supervise into the 3DGS feature field:

Grouping Features: 2D object-level masks are supervised
into 3D features for object clustering and singulating them
from the environment. We obtain 2D masks from the training
images using the object detection and segmentation network
Detic [10].

To distill 2D object masks into 3D gaussian partitions, we
borrow principles from [49, 50] and train a feature embedding
encoder Femb that passes an input gaussian mean position
x⃗ ∈R3 through a hash-grid encoder [51] followed by an MLP,
outputting a D-dimensional embedding vector. 3D gaussian
features are rendered from a specific camera location to
produce a feature map. For this we use Nerfstudio’s [52, 53]
3DGS tile-based rasterizer implementation, with gradients
backpropagated through the MLP within Femb. 3D grouping
features are then supervised with the contrastive objective
from Bhalgat et al. [50], which operates through two comple-
mentary mechanisms: (1) attracting features that belong to the
same object mask by minimizing their distance in embedding
space, and (2) repelling features from different object masks
by maximizing their embedding distances. We observe that
computing and including a negative mask (wherever an object



mask does not exist) is helpful in reducing group feature noise
for the scene background (anything in the scene that is not a
tracked object).

Before the tracking phase begins, the system must identify
and segment individual objects within the scene. As proposed
in GARField [49], this is accomplished by clustering the
group features using HDBSCAN. The result is a mapping
from each 3D gaussian to a mask and label.

Language Features: To facilitate natural language queries
in 3D, we incorporate multi-scale CLIP pyramid features
distilled into the 3D gaussians, following the methodology
described in [19] and [24]. Specifically, a scale-conditioned
language feature embedding function is defined, Flang(⃗x,s) :
(R3,R)→ RD which maps a position x⃗ and physical scale s
to a language-aligned embedding vector.

As in LERF, during deployment we use the CLIP text
encoder to obtain embedding vectors for arbitrary natural
language input queries. The relevancy of each gaussian to a
given text query is computed by taking the cosine similarity
score between the gaussian’s language embedding and the
text embedding.

Self-Supervised Features for Object Tracking: We distill
dense visual features extracted from DINOv2 [9] into the 3D
gaussians during training. These features are then supervised
into the gaussians, enabling the model to render them at
deployment time for optimizing object tracking objectives,
similar to the method described in Robot See, Robot Do [54]
and further detailed in the next sections.

Unlike the object grouping features and language features
where we learn embedding functions to map inputs into
feature space, the supervision of DINO visual features into
POGS instead directly renders and optimizes trainable feature
vectors of dimension-d with each Gaussian primitive. To
integrate the DINO features efficiently, we apply principal
component analysis (PCA) to reduce their dimensionality
from several hundred to d = 64 dimensions. Without dimen-
sionality reduction, storing per-Gaussian feature vectors would
be computationally prohibitive.

We use Nerfstudio’s [55] Splatfacto implementation of
Gaussian Splatting with the gsplat [53] backend and modify
it with the aforementioned image encoders and feature
supervision losses.

C. Persistent Object Representation

Because POGS contains language, grouping, and visual
features in a single representation, POGS can be used to query
for objects with natural language and track those objects
online by representing each object as a cluster of gaussian
primitives in 3D. For each gaussian cluster, the system uses
the centroid of gaussians within that cluster as the object
frame, canonicalized such that the initial pose of each object
is rotated to align with the world frame.

POGS extracts DINO visual features from live stereo
camera observations, from only the left camera of the stereo
pair. Feature rendering from the POGS model can directly
obtain a synthetic view of the object feature maps from
the same perspective as the real camera by using calibrated

extrinsics. Simultaneously, POGS captures depth maps that
serve as ground truth geometry to further regularize object
pose. To generate accurate depth maps from stereo images, we
employ a neural depth estimation model developed by Toyota
Research Institute (TRI) [56], chosen for memory efficiency
and real-time inference. This model operates effectively at an
image resolution of 1080p, with depth inference frequency
at approximately 30 Hz.

Fig. 3: Occluded Grasp Sampling POGS is capable of sampling and
performing robot grasps on geometry that is fully occluded from the
observation camera view (shown). The drill handle is fully occluded by the
motor body, yet our POGS unified representation enables handle grasping
based on previously observed geometry.

D. Tracking with POGS

Inspired by RSRD [54], the core of the tracking algorithm
is the computation of the loss between the distilled DINO
features of the rendered Gaussian Splat and the observed
images. This feature loss measures how well the current
pose estimates visually align the rendered model with the
actual objects. POGS also includes a depth loss term that
compares the rendered depth maps with depth maps extracted
from the real observations, enforcing geometric consistency.
The total loss is a weighted sum of the feature loss and
depth loss, guiding the optimization to adjust per-object pose
parameters until convergence. Each Gaussian cluster pose
parameter is optimized independently, allowing POGS to
track multiple moving objects, without imposing constraints
on their relative movements. unlike prior work in real-time
tracking of gaussian splats.

For each new frame captured by the camera, POGS
repeats the rendering, feature extraction, loss computation,
and optimization steps. This iterative process continually
refines the pose estimates, improving alignment between the
rendered clusters and the observed images over time.

E. Human & Robot Manipulation

We deploy POGS for tracking human and robot manipula-
tion tasks where objects may be in varying poses compared to
their initial positions in the scene capture. To facilitate robot
grasping based on language queries, POGS first identifies the
object cluster that corresponds to the query. The Gaussian
means representing that object cluster are passed as a point
cloud to Contact-GraspNet [57], which generates potential
grasp candidates along with their respective scores, and the
highest scored grasp is executed. By using the Gaussian



Fig. 4: Object Reset Experimental Setup Middle: A human randomly
perturbs the configuration of the tracked objects according to the two tiers.
Right: A robot arm then plans a grasp on language-queried objects and
performs object reset. This process repeats until errors in object state
estimation are too high to recover for grasping.

means, the object grasp is based on the full 3D object
geometry embedded in POGS, which can be beneficial
compared to methods that solely deproject depth and are
partially occluded as seen in Figure 3.

Fig. 5: Tool Servoing Experimental Setup The robot continuously attempts
to align the tracked tool with the target. Top: A human perturbs the tracked
tool while in the robot’s gripper. The robot adjusts its end-effector position
with closed-loop control to re-align the object with the target. Bottom: As a
human shifts and rotates the target into new poses, the robot moves so the
tool follows the target while maintaining alignment.

V. P H Y S I C A L E X P E R I M E N T S

For physical experiments, we use a UR5 robotic arm with
a static ZED 2 stereo camera. The POGS model is trained
and initialized on a PC workstation with an NVIDIA 4090
GPU. We evaluate POGS on two robotic manipulation tasks
across various objects. These tasks test POGS’s ability to
track objects of interest when manipulated by a robot or a
human.

Both tasks begin with the UR5 using a wrist-mounted ZED-
Mini stereo camera to scan a scene and initialize a POGS.
Scene scanning with the predefined hemispherical trajectory
takes on average 2 minutes and training a POGS takes on
average 3 minutes.

A. Sequential Object Reset

This experiment evaluates POGS’s localization accuracy
in sequential object reset tasks guided by natural language.
The tasks involve irregular objects of various shapes, sizes,
and weights: a jigsaw, clothes iron, shoe, shelf, and shoebox.

Before each trial, a human randomly perturbs the positions
and orientations of all objects, with perturbations defined
in two tiers: In tier 1, objects could be translated anywhere
within the ZED 2 camera frustum but rotated only up to 90°
around the vertical axis from their initial configuration. In tier
2, objects could be translated anywhere within the frustum
and rotated to any magnitude around the vertical axis.

The operator provides natural language instructions speci-
fying which object to grasp and where to place it. The robot
executes the planned grasp on the target object, adjusts its
orientation in the gripper to align with the major axes of
the target placement object, and moves the grasped object to
the placement location. After each pick-and-place operation,
the scene is reset by placing the grasp object back onto
the tabletop, after which the human operator perturbs the
objects. Tracking remains running the entire time, and these
consecutive object resets continue until POGS loses tracking
of the objects, defined as when repeated grasp planning
failures occur due to irrecoverable errors in object state
estimation.

We assess and report in Table I the performance across 3
pick objects and 2 place objects, conducting five trials per pick
object on both tiers. The performance metrics included the
maximum and mean number of consecutive successful object
resets without losing tracking, the successful object reset
rates, and the mean and standard deviation of the translation
error between the intended and actual placement positions.
For example, in the ”Clothes Iron to Shelf” task under Tier
1, POGS achieved a maximum of 12 consecutive successful
object resets, with a successful pick rate of 32 out of 36
attempts and a mean translation error of 3.4 cm measured by
calipers on reference markers made to each object. Under Tier
2, despite more extreme perturbations including full object
rotations, POGS achieves 6 consecutive operations, and a
mean translation error of 2.2 cm. Similar performance trends
were observed in the other tasks, where POGS consistently
outperformed ablations that either had depth perception turned
off or were optimized with RGB substituting for DINO
features. The ablations highlight the critical role that both
depth perception and robust visual features play in achieving
accurate object localization and successful sequential object
resets.

B. Tool Servoing

We consider a tabletop workspace with a tool object and
an ArUco marker fixed to a target object surface. In these
experiments, the tool object is a drill and the target object is
a wooden platform. The tool is manually annotated with a
coordinate frame at the tool tip to indicate which component
to align with the target (i.e. align the drill tip perpendicularly).
The robot then grasps the tool and aligns it to the tracked
ArUco marker. The robot then performs 6DoF visual servoing



Jigsaw to Shelf Clothes Iron to Shelf Shoe to Shoerack

Tier 1 Tier 2 Tier 1 Tier 2 Tier 1 Tier 2

No Depth No DINO POGS POGS No Depth No DINO POGS POGS No Depth No DINO POGS POGS

Max Consecutive OR 1 0 11 3 3 0 12 6 2 0 8 7
Mean Consecutive OR 0.33 0 4.4 1.6 0.6 0 7.2 3 1.0 0 6.4 3.8
Successful Pick Rate 2/4 0/3 23/27 9/16 6/9 0/3 32/36 15/18 7/10 0/3 34/38 20/24
Successful Place Rate 1/2 - 22/23 8/9 3/6 - 28/32 13/15 5/7 - 32/34 19/20
Mean Position Error (cm) 2.1 - 2.5 1.8 7.0 - 3.4 2.2 4.7 - 4.1 3.5
Std Position Error (cm) 0.0 - 1.0 1.1 3.7 - 2.6 0.8 1.5 - 1.5 1.3

TABLE I: Object Reset Results Consecutive OR refers to a single trial with repeated Object Resets without losing tracking out of 5 trials for main
experiments, and 3 trials for ablations. Note that the denominators for the successful pick rate and successful place rate metrics vary across trials. This
variation arises because each trial was executed until a grasping failure occurred—i.e., when the error in object state estimation became too high to
recover—resulting in a different total number of reset attempts per trial.

Tier 1 Tier 2

Perturbations Success Rate Time (s) Success Rate Time (s)

Clockwise 24/25 6.30 20/25 12.26
CCW 24/25 5.72 20/25 13.06
Follow Target 24/25 - 21/25 -

TABLE II: Tool Servoing Results We record results across 5 trials for
each tier where each trial has the target object move to 5 poses and at
each pose, the tool is perturbed clockwise and counter clockwise by 15-
30 °. For the perturbations, we measure the time it takes for the drill to
recover from the perturbation and realign with the target. Since the target
was constantly moving over time, recovery time wasn’t recorded for the
follow target experiment.

such that the tool tip remains in its relative target pose to
the object. We leave tool rotation about its target axis (i.e
drill bit axis) unconstrained, and pick the orientation during
servoing which minimizes tool motion. During each trial, the
target object is moved to 5 random poses in the workspace
and we record the success rate for how often the tool follows
the object. At each pose, a human moves the drill 15-30°
clockwise or counterclockwise about the grasp axis, and
records how often the robot can adapt to this perturbation
and locate the drill tip within 3cm and 5◦ of the target. We
also report the average time taken for the robot to adapt to
the perturbed gripper pose.

We run this experiment on two tiers with 5 trials each tier.
Tier 1 experiments have the target object stay on the tabletop
plane and can move anywhere within a 55 cm by 50 cm
square, and the tool orientation in-grasp can be changed up
to 15 degrees. Tier 2 experiments have the target moving in
3D space where it can move anywhere within a 55 cm by 72
cm by 10 cm box such that the ArUco marker was visible to
the camera and the robot joints did not occlude the ArUco
marker from the camera.

The results are reported in Table II. Overall, POGS can
be used to recover from tool perturbances in gripper up to
15° in 48 of 50 trials at an average of 6.01 seconds. When
the tool-in-gripper rotation increased to 30°, the success rate
drops to 40 of 50 trials at a longer time average of 12.66
seconds largely because higher object deltas are harder to
track. Similarly, for 2D space, the tool was able to follow
the target object 24 of 25 trials but in 3D space that went
down to 21 of 25 trials.

V I . L I M I TAT I O N S

One key limitation of this work is that the online tracking
frequency is limited to 5Hz on an NVIDIA 4090 GPU due
to computational bottlenecks. This includes approximately
140ms latency for DINO feature extraction using a ViT-S, and
multiple steps of optimization necessary per frame iteration to
adjust the pose parameters of each object until convergence.
As a result, objects had to be moved slowly with no sudden
motions or quick changes in direction to avoid losing track
of them. In future work, we will parallelize depth inference
and DINO feature extraction for tracking speed optimization.

Another limitation is that objects that are partially occluded
(by a hand, a robot gripper, etc.) have less robust tracking
compared to fully unobstructed objects due to degraded
tracking feature alignment between the real features and
rendered features. In future work, we will add an end-effector
regularization term for objects grasped by the robot as this
is a useful prior constraining where the object can be in the
workspace. Furthermore, we can also develop robot gripper
masking to increase the alignment between rendered features
and real features.

V I I . C O N C L U S I O N

In this work, we present Persistent Object Gaussian Splat
(POGS), a system for tracking and manipulating irregularly
shaped, previously unseen objects in dynamic environments.
By integrating language, grouping, and self-supervised visual
features into an explicit 3D Gaussian representation, POGS
aims to address some of the challenges associated with CAD-
based, NeRF-based, and conventional point cloud methods.
Our experimental results suggest that POGS can maintain
object state estimates during tasks such as object resets and
tool servoing.
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