Robo-DM: Data Management For Large Robot Datasets

"Kaiyuan Chen', Letian Fu'!, David Huang'

*, Yanxiang Zhang'

*, Lawrence Yunliang Chen', Huang Huang',

Kush Hari!, Ashwin Balakrishna?, Ted Xiao?, Pannag R Sanketi2, John Kubiatowicz!, Ken GoldbergL3

Abstract— Recent results suggest that very large datasets
of teleoperated robot demonstrations can be used to train
transformer-based models that have the potential to generalize
to new scenes, robots, and tasks. However, curating, distributing,
and loading large datasets of robot trajectories, which typically
consist of video, textual, and numerical modalities - including
streams from multiple cameras - remains challenging. We
propose Robo-DM, an efficient open-source cloud-based data
management toolkit for collecting, sharing, and learning with
robot data. With Robo-DM, robot datasets are stored in a
self-contained format with Extensible Binary Meta Language
(EBML). Robo-DM can significantly reduce the size of robot
trajectory data, transfer costs, and data load time during
training. Compared to the RLDS format used in OXE datasets,
Robo-DM’s compression saves space by up to 70x (lossy) and
3.5x (lossless). Robo-DM also accelerates data retrieval by load-
balancing video decoding with memory-mapped decoding caches.
Compared to LeRobot, a framework that also uses lossy video
compression, Robo-DM is up to 50x faster. In fine-tuning Octo,
a transformer-based robot policy with 73k episodes with RT-1
data, Robo-DM incurs 2.6% increase at training performance
loss. We physically evaluate a model trained by Robo-DM
with lossy compression, a pick-and-place task, and In-Context
Robot Transformer. Robo-DM uses 75x compression of the
original dataset and does not suffer reduction in downstream task
accuracy. Code and evaluation scripts can be found on website
https://github.com/BerkeleyAutomation/fog_ x.

I. INTRODUCTION

Recent work [1-7] suggests Vision-Language-Action mod-
els [1, 4, 5] can enhance robot capabilities and generalization
in handling multiple settings in diverse environments. A key
ingredient for large model training is large and well-curated
datasets of teleoperated robot demonstration trajectories such
as the Open-X Embodiment (OXE) dataset [2]. However, the
current management of robot data is inefficient [2]. Each
robot demonstration consists of sequences of actions and
observations, making the learning samples much larger and
of diverse structrure compared to the images or text tokens in
VLMs [8-12] and LLMs [13, 14]. At tera or even penta-byte
scale, which is sometimes characterized as Big Data [15],
existing robot data storage methods can be inefficient. We
propose Robo-DM, an efficient data format with a toolkit for
robot data collection, management, and training.

A typical robot dataset includes a number of episodes, a
sequence of actions performed by an agent from a starting
state to a terminal state. Each episode contains multiple sensor
data streams in addition to language instructions and other

University of California, Berkeley

2Google Deepmind

3Department of Industrial Engineering and Operations Research
TFor correspondence and questions: kych@berkeley.edu

Robo-DM

| AN
Unified Robot
Data Format

o © -‘
Visualization ra|n|n

P PyTorch

5 L'&b nm.‘
5&]
o™ 40

Fig. 1: Robo-DM can streamline robot data collection, management, and
learning. (B) Robo-DM uses a unified format for vision, language, and action
that does not rely on assumptions about timestamps and data, and supports
plug-and-play data collection to integrate with existing setups. (C) Robo-DM
can facilitate replay and visualization. (D) Existing training frameworks can
load from Robo-DM efficiently with minimal modification.

TensorFlow

Data Collection

metadata such as robot, task, environment, and control scheme
specifications. The size of a typical episode ranges from 1 MB
to 400 MB, depending on the episode length, compression
level, number of cameras, and camera resolution. Data streams
may be recorded at different sampling rates. Episodes are
typically stored as a sequence of matrices; for example,
data collection with DROID [6] automates data storage
with Hierarchical Data Format 5 (HDF5) [16], a format
that supports hierarchical storage of matrices. OXE uses
Reinforcement Learning Datasets (RLDS) [17], an extension
of Tensorflow Datasets (TFDS) to store reinforcement learning
demonstrations. Storing image and sensor data directly in
matrices is lossless but not space efficient. One emergent
framework, LeRobot [18], provides a platform to share robot
models and datasets based on lossy video compression and
HuggingFace datasets. However, its file structure is complex
and loading is generally slower due to decoding.

We observe the following challenges in robot data collec-
tion and usage:

(A) Transmission Efficiency: Distributing robotics datasets
is costly. Cloud service providers, such as Google Cloud
Platform (GCP) and Amazon Web Services (AWS), charge
the data host for both data storage and outbound data transfers.
The cost of transferring data often exceeds the cost of storing
it. For example, storing 8.9 TB of Open-X data on Google
Cloud costs 172 US dollars per month, but every full download

costs between 172 US Dollars and 1,540 US dollars. ! Directly
training with cloud storage requires repeated downloads if the
local storage cannot store the full dataset, further increasing
network traffic and cost to the data host. Thus, improving
data compression and transmission efficiency can reduce host
costs and encourage public sharing of datasets.

(B) Usability and Simplicity: Existing robot data frame-
works impose restrictions on file structure, data layout,
semantics, and alignment. In particular, hybrid approaches
rely on framework-specific assumptions to handle multiple
formats simultaneously. Extending the current framework or
migrating between frameworks can be challenging, resulting
in complex structure and file organization. Figure 2 shows a
comparison of different storage formats.

(C) Data Loading Performance: Large robot datasets are
typically loaded into computationally training applications. In
training, decoded frames are frequently reused and randomly
accessed, and the decoded data is loaded on demand. Existing
frameworks that use heavy compression sometimes lead to
high computational resource utilization and interfere with
the training performance. Thus, an efficient and perform ant
data-loading framework should utilize available resources
without contention.

We introduce Robo-DM, an efficient cloud-based toolkit
for collecting, sharing, and learning with robot data. Robo-
DM streamlines storage for vision, language, and action
data via a unified container format with Extensible Binary
Meta Language (EBML). Robo-DM efficiently orchestrates
heterogeneous data streams, supporting flexible lossless
compression and lossy compression for enhanced transmission
efficiency. In prior work, LeRobot [18] empirically evaluates
how lossy video compression parameters in FFmpeg affect
robot policy accuracy. Octo is also pre-trained by compressing
image frames in OXE to lossy images [1]. Robo-DM improves
the data loading performance for training workloads, which
requires repetitive data access by using memory-mapped
caching for faster data retrieval and loading. Loading from
cache and decoding are load-balanced to maximize the utiliza-
tion of compute, memory and storage resources. Robo-DM
requires minimal integration effort with existing frameworks.
It supports plug-and-play data collection, training, replay, and
visualization with mainstream frameworks, and can also be
easily exported to other formats such as HDF5 and RLDS.

Experiments suggest that Robo-DM can reduce the size of
data by up to 70 times with lossy compression compared to
how Open-X-Embodiment currently shares the dataset, and up
to 50x faster than LeRobot, a framework that also uses lossy
video compression to encode vision data. We fine-tune Octo,
a transformer-based robot policy trained with an 800k Open-
X-Embodiment dataset with 74k training episodes from RT-1.
Robo-DM reduces the dataset size by 4.39 times, while being

IThe rate is calculated with the egress network traffic pricing in Google
Cloud Platform (GCP), where the Open-X-Embodiment dataset is hosted.
We use the size of Open-X v1.1 dataset with 8,964 GB in total. The rate
differs by the downloading source and destination region. The rate does not
consider retransmission of lost packets, so the actual cost is higher than the
estimation.

Metadata
otadta | WPs
P on #1 Aoache A Eps. 1 Feat. 1 Metadata
ache Arrow
P Eps. 2 Feat. 1 Episode #1 ‘
Path to MP4 Safetensor]
- Episode #2
Action Eps. Start Index
Frame Index | || Eps. End Index Episode #3

(A) RLDS

(B) LeRobot (C) Robo-DM

Fig. 2: A File Structure Comparison of RLDS, LeRobot and Robo-DM
All formats include metadata, storing descriptive information such as authors
and dataset summary. (A) Reinforcement Learning Dataset (RLDS) stores
episodes in partitions, where each partition is a Tensorflow Dataset Record
file. All streams in episode data are compressed matrices that can be directly
loaded and trained in Tensorflow. (B) LeRobot combines three formats for
robot data. For vision data, it uses one MP4 per video stream in an episode,
and uses HuggingFace Dataset (with Apache Arrow as backend[19]) to store
language and action streams and the path to the MP4 files. It also uses
safetensors [20] to store episode information. All the streams are scattered:
to extract an episode, the framework needs to query safetensors for episode
information - which is used to find the rest of the non-video streams in
the HuggingFace Dataset - and finally use the frame information from the
HuggingFace Dataset to find the corresponding MP4 files for vision streams.
(C) In Robo-DM, robot data in all the episodes are stored and aligned in a
self-contained format. To load an episode, one simply reads from Robo-DM
files and load as trainable matrices.

3.0 times faster in small batch size (data loading intensive)
and does not introduce any slowdown in the training pipeline
with large batch size (compute intensive).

This paper makes the following contributions: (1) an exten-
sion of EBML to define a container format that unifies time-
based robot data storage; (2) Robo-DM, a framework with 6
new features using this container format; (3) Experimental
data that suggests Robo-DM can significantly reduce dataset
size, improve loading speed, and incur marginal training
performance degradation.

II. RELATED WORK

Big Robot Data The robot learning community is actively
building a number of open-source robot learning datasets [3,
21, 22]. Recent work, such as Octo [1], Open-VLA [5], are
trained on large datasets such as RT-1 [3], RT-2 [4], Open-
X-Embodiment [2], Distributed Robot Interaction Dataset
(DROID) [6]. Their initial results suggest training with large
and diverse robotics datasets can enhance robot capabilities
and generalization in handling multiple settings in diverse
environments. In this work, we present an efficient data
pipeline for managing large and diverse robot datasets.

Robot Data Frameworks Existing frameworks for collect-
ing, managing and storing robot data fall into the following
three categories: (1) Serialized Log format that preserves
timing information. This allows users to directly replay the
data, e.g. with the official ROS2 tool, rosbag [23]. (2) Matrix
format that can be directly supported by training infrastructrue.
For example, DROID [6] automates data storage with HDF5
Hierarchical Data Format (HDF5) [16] and existing OXE
datasets use RLDS, an extension of Tensorflow Datasets
(TFDS) [24] that store and retrieve the interaction between an
agent and an environment with observation, action and reward.

Storing image and sensor data directly in matrices limits the
capability of compression, and is thus not space efficient. (3)
Hybrid formats that store different features in separate files
and require assumptions on how different features are aligned
and synchronized, such as LeRobot [18], a platform to share
robot models and datasets based on HuggingFace datasets.

Cloud and Fog Robotics Fog Robotics [25] utilizes cloud
and edge resources for robotics applications. Existing Fog and
Cloud robotics focus on deployment of robotics applications,
such as grasp planning [26], motion planning [27], visual ser-
voing [28], and human-robot interaction [29]. FogROS2 [30]
automates cloud compute resources for robotics, addressing
issues such as connectivity [31], latency [32], and cost [33].
We recognize the cost of the cloud required to distribute large
robot datasets, and study how formats affect robotics learning
in data collection, loading and management.

III. RoBO-DM FEATURES

Six novel features differentiate Robo-DM from existing
robot data frameworks:

(1) Self-Contained Robot Data Storage: Robo-DM uses
a self-contained file format that integrates and stores hetero-
geneous robot data streams, ensuring all necessary data is
consolidated within a single file.

(2) Vision, Language, Action Data Orchestration: The
format of Robo-DM allows diverse binary robot data streams,
including sensor data, environment specifications, language
instructions, and Kinematic controls.

(3) Data Flexibility: Robo-DM is extensible for new
different data streams, compression algorithms and video
encoding formats. For example, Robo-DM enables users to
flexibly choose from storing vision data as a sequence of
serialized matrices, images, or encoding with lossy or lossless
video codecs. With Robo-DM, one can record all the data
with original timestamps without resorting to heuristics on
data alignment.

(4) Efficient Dataset Size: Robo-DM efficiently encodes
heterogeneous time-aligned streams. It uses video compres-
sion to significantly reduce the size of file transfer.

(5) Data Loading Efficiency: Robo-DM efficiently loads
data by caching decoded frames and balancing resource
utilization across available hardware.

(6) Simple Data Collection, Training and Visualization:
Robo-DM adopts a concise interface for data collection
that is compatible with existing systems with minimal
modification. It integrates seamlessly with TensorFlow and
PyTorch interfaces, enabling easy adoption. It also allows
for exporting of the collected data to existing state-of-the-art
data storage frameworks, such as RLDS and HDF5. Robo-
DM supports replaying messages through Robot Operating
System (ROS) 2, the de-facto standard for developing robotics
applications. One can use off-the-shelf ROS2 tools such as
rviz [34] or Foxglove [35] to visualize the replayed streams.

IV. RoBO-DM DESIGN
A. Unified and Self-Contained Robot Data Format

Robo-DM uses Extensible Binary Meta Language (EBML)
[36] for data structuring. EBML is a versatile and extensible
markup language that combines the flexibility of Extensible
Meta Language (XML) with the efficiency of binary encoding.
It organizes binary data elements in a hierarchical structure
similar to XML, allowing for nested elements and coherent
data management. This enables EBML to handle data streams
from different sources within a single container, using self-
describing elements that ensure compatibility and future
extensibility. A notable application of EBML is in the
MKYV [37] video container format, which uses it to store
multiple video and audio tracks, along with subtitles, in a
time-aligned manner within a single container.

Figure 3 illustrates how Robo-DM encapsulates hetero-
geneous robot data streams. Robo-DM compresses vision
streams and serializes robot data into byte packets. A byte
packet encapsulates the raw bytes and descriptive information,
such as timestamp and stream information. To efficiently
replay the data and keep the relative timing information
between data streams with different frequencies, all the data
packets are stored with a relative timestamp to the beginning
of the episode. Robo-DM extends MKV to store robot data
to ensure the synchronization of multiple streams on vision,
language, and action within the same container.

Data Collection and Post-Processing Compression can
be computationally intensive. To prevent interference with
the data collection process, Robo-DM uses its file format
flexibility to first store all data in raw serialized form. After
the data collection is finished, Robo-DM iterates through the
collected data, transcodes data that requires compression and
re-arranges the collected data (remux) to arrange the data
packets. Because training applications sometimes access the
episode at a given time frame, Robo-DM groups time-aligned
data streams together. On querying a specific frame, metadata
is used to identify the related segments and decode the video
starting from the latest keyframe before the start of the slice.
All the decoded trajectories are cached to speed up future
accesses.

B. Transmission-Efficient Storage, Retrieval and Loading

Transmission-Efficient Compression Robo-DM unifies
heterogeneous data streams that require different mechanisms
for compression and serialization. Because Robo-DM nat-
urally supports byte streams, it is agnostic to mainstream
byte compression algorithms and video encoders. For vision
data, three channels (red, green, blue) can be compressed
with off-the-shelf video compression algorithms, such as
H.264 [38], H.265 [39], AV1 [40]. For large matrices that
require full precision, such as stereo depth images, users
can alternatively choose to compress them with lossless
compression algorithms such as FFV1 [41, 42].

Efficient Decoding Cache For sequential access patterns,
compression-based algorithms can reduce space usage by
decoding all frames in order. When training, decoded frames

Original Data

Gripper Closed
Position Delta
Rotation Delta

“Pick up the clothes”

:|[Encoded Timed Packets| ; [EBMLFile |
i Metadata
Time E Segment

Byte Packet E Time | Byte Packet

Time | Byte Packet

Time | Byte Packet
Time : Segment

| Byte Packet E Time | Byte Packet

Time i Time | Byte Packet

Byte Packet E Time | Byte Packet

Fig. 3: How Robo-DM stores an episode of robot data with vision, language and action data Robo-DM encodes vision, language and action data. For
vision data, Robo-DM uses video or image compression; language and action data are serialized into bytes. All the bytes are encapsulated with an intake
timestamp. Then Robo-DM multiplexes different streams of data into a self-describing EBML file format.

are frequently reused and randomly accessed, and the decoded
data is loaded on-demand. Robo-DM amortizes the random
access patterns using memory-mapped files (mmap) [16, 43].
Mmap creates a new mapping in the virtual address space
of a process to a cache file. If a slice of data is used, only
the portions of the file that are actually used are brought
into memory, conserving both I/O bandwidth and physical
memory.

Load Balancing For Decoding and Decoding Cache
Robo-DM automates the choice of computationally heavy
decoding, loading directly cache in memory, and loading
the decoded matrices from disk. To prevent overusing a
single resource, Robo-DM estimates the potential latency
of accessing the data and dynamically balancing the access.
Specifically, if the memory resources are underutilized and a
prior decoded matrix is available, this means the decoded data
is likely in physical memory without being cached to the disk
by mmap, and Robo-DM can directly use the decoded cache.
In contrast, if the memory is full, cache miss is frequent and
the data is not frequently accessed, Robo-DM does not load
from cache, and directly decodes the video data instead.

C. Integration with existing Frameworks

Data Collection Interface In order to integrate with custom
data collection software stacks, Robo-DM uses a concise
programming interface for data collection. Listing 1 shows
how the Robo-DM data collection library infers time and the
data type from the input vision, action and language data.
Due to the simplicity in Robo-DM’s data storage format, the
data collection library introduces minimal code complexity
to the overall custom data collection software stack.

Plug-and-Play Data Collection and Visualization Robo-
DM supports integration with ROS2-enabled setups to collect
data in a plug and play manner. In ROS2, computational
modules, nodes, can be deployed on different machines. ROS2
provides an off-the-shelf tool, rosbag, to capture data streams
from sensors, logs, and various topics during robot operation.
Robo-DM supports transcoding from and exporting robot data

import robo_dm

1

2

3 # Data Collection

4 trajectory = robo_dm.Episode ("Autolab-01-02-2024.v1a")
5 trajectory.add(feature = "language_instruction",

6 value = "pick up the tiger and place in the bowl")
7 trajectory.add(feature = "image", value = image)

8 trajectory.add(feature = "joint_state", value = state)
9

10 # Data Loading

11 trajectory = robo_dm.load(path = "Autolab-01-02-2024.v1la")
12 # [image_1, image_ 2...]

13 images = trajectory["image"]

14 # [joint_state_1, joint_state_2, ...]

15 joint_states = trajectory["joint_state"]

18 # Support
19 dataset.expo

RLDS
F5, RLDS

rt (format = "hdf5")

Listing 1: Code Example Robo-DM adopts a minimalist data collection,
loading and exporting interface that can be easily integrated with existing
frameworks.

to rosbag, with all the timing information recorded. Rosbags
also can be directly replayed in ROS2. The ROS2 community
provides a number of frameworks, such as rviz [34], and
Foxglove [35] from the open source community, a browser-
based tool that enables visualization of ROS 2 topics. Besides
replaying videos, these visualizers also support visualization
in 3D, which is helpful for action data such as robot state
and motions.

Data Loading Interface To support existing training
frameworks with minimal modification, Robo-DM supports
accessing robot data in the same way as accessing typical
HDF5 files (shown in Listing 1). Robo-DM supports
converting robot data to other state-of-the-art formats, such
as HDF5 and Tensorflow dataset.

V. EVALUATION

Our experiments consider three questions: (1) How does
Robo-DM’s training data loader compare with state-of-the-art
data loaders? (2) How does Robo-DM work with training
workloads in terms of data loading speed, space saving, and
training performance? (3) Does Robo-DM preserve the policy

Dataset Description

Total Dataset Size (GB)

Dataset Avg. Frames Original Robo-DM-

Image Streams Resolution per Episode RLDS HDF5 Lossless LeRobot Robo-DM
Bridge 1 RGB (480, 640) 34 387.49 (73x) 779.24 (147x) 114.63 (22x) 16.34 (3x) 5.31 (Ix)
Cable Routing 3 RGB (128, 128) 25 4.67 (18x) 7.38 (28x) 1.67 (6x) 0.36 (1.4x) 0.26 (1x)
Door Opening 1 RGB (720, 960) 42 7.12 (71x) 35.35 (354x) 2.89 (29x) 0.38 (4x) 0.10 (I1x)
AutoLab URS 2 RGB, 1 Depth (480, 640) 97 76.39 (23x) 258.33 (88x) 23.45 (7x)) 3.26 (1x)

TABLE I: Dataset information and Size Comparison with Different Formats in Gigabytes (GB). Compression ratios differ by the number of image
streams and resolution. Robo-DM and LeRobot use lossy compression, while the rest are lossless. Both LeRobot and Robo-DM use AV1 codec with 30
Constant Rate Factor (CRF), a factor that balances compression and decoded video quality. These parameters are suggested by LeRobot video benchmark [44].
(-) LeRobot omits depth stream and some action streams at its conversion from RLDS [17].

—+— LeRobot —— RLDS —e— Robo-DM Robo-DM-Lossless —s— HDF5
(a) Door Opening (b) Cable Routing (c) Bridge
I //"’_"’—_'
101_ 102- ./‘——./._‘ /’/4/‘
104 /—‘\\

1014

/

7 T T T

T T T
2 4 6 8 2 4 6 8

10°4

Log-Scale Throughput
(Episode/Second)

o
=
o
o

Number of Episodes Per Batch

Fig. 4: Episode Per Second Throughput of Robo-DM on Three OXE
datasets with Different Characteristics We compare Robo-DM with
baseline data loading Methods RLDS, HDF5 and LeRobot. Complete
episodes are loaded concurrently as a batch, and we record the average
throughput with 200 batches.

i) a) Door Opening (b) Cable Routing (c) Bridge

§ i LeRobot v

& 10° ALeF{obot LeRobot .
25 RLDS
2z Better, 102 Better, *

< RLDS - Better
% Robo-DM

< |Robo-Dm RLDS Robo-DM 1074

ﬁ . * L]

Q 10

@D HDF5 = HDF5 HDF5
o 10° T T T e
3 1072 107! 1072 107! 107! 10° 10*

Log-Scale Cloud Egress Cost of Downloading Full Dataset (USD)

Fig. 5: Concurrent Loading Latency with respect to Episode Size of
Robo-DM We compare Robo-DM with baseline data loading Methods RLDS,
HDF5 and LeRobot. Complete episodes are loaded concurrently as a batch,
and we record the average latency of 200 batches with batch size 8 episodes.
We use the lowest GCP cost of 0.02 US Dollars (USD) per GB.

performance?

Setup We evaluate Robo-DM with a standard workstation
setup: Intel i9-13900K Processor with 96GB RAM and
NVidia 4070 Ti Super GPU. The workstation is equipped with
6TB NVMe M.2 SSD with the reading throughput up to 5000
MB/s and writing throughput up to 2500 MB/s. It connects
Internet with a 1 Gbps Ethernet connection that can download
from Open-X-Embodiment Google Cloud Bucket with 10
Mbps. We make sure the batch can fit in RAM without swap
space. The video streams in Robo-DM are decoded with CPU
without specialized GPU or additional hardware decoder.

A. Data Loading Benchmarks with Open-X-Embodiment

We evaluate the data loading performance of Robo-
DM with a number of exemplar datasets from Open-X-
Embodiment (OXE). In the experiments, we concurrently
load multiple entire episodes into memory, and we explicitly
cast the data into in-memory numpy arrays. We measure the

latency of issuing a number of concurrent reads (i.e. a batch)
to the time that all the episodes are loaded. For each run, we
measure the average latency over 200 data loads.

Datasets We use 1) Bridge [22]: two WidowX arms interact
with household environments including kitchens, sinks, and
tabletops. Skills include object rearrangement, sweeping,
stacking, folding, and opening/closing doors and drawers. In
the dataset,there are 4 RGB streams and 1 depth stream with
25,460 training episodes. 2) UC Berkeley Cable Routing: [45]
one Franka robot arm routes a cable through a number of
tight-fitting clips mounted on the table with 1,482 training
episodes. 3) NYU Door Opening: [46] A Hello Stretch robot
opens cabinet doors for a variety of cabinets with 435 training
episodes. 4) Berkeley AUTOLab UR5 [47]: A URS robot
arm pick-and-place of a stuffed animal between containers,
sweeping a cloth, stacking cups with 896 training episodes.

Baselines We compare Robo-DM with the following
baselines 1) RLDS [17] Open-X-Embodiment is stored and
shared in RLDS format. In the evaluation, we directly
download and load the datasets with official instructions.
2) LeRobot [18] We convert Open-X-Embodiment datasets
in LeRobot datasets with the provided official script. Some
features in Open-X-Embodiment are omitted in the conversion.
We sequentially extract episodes suggested by the example
instructions. 3) HDF5 [16] We use Robo-DM to convert
Open-X-Embodiment datasets to HDF5 formats. Since one
HDFS5 file per trajectory, we implement pre-fetch buffer and
pytorch loader with the same setup as Robo-DM. We use a
pre-fetch buffer of 50 episodes.

Episode Size Table I shows that Robo-DM significantly
reduces file size (18x, 73x, 23x and 73x) per episode
compared to the RLDS, a format in which these datasets
are originally stored and shared. The episode size reduction
leads to high accessibility to large robot datasets, transmission
efficiency, and cost efficiency, shown in Figure 5.

Loading Latency Figure 4 compares the throughput
difference of Robo-DM compared against LeRobot, RLDS,
and HDF5. The lossless version of Robo-DM has similar
throughput as Robo-DM. It is faster than LeRobot by 33x, 20x
and 5x. Robo-DM is slower than HDFS because the HDF5
data is uncompressed and loaded in high disk throughput.

Limitation Because Robo-DM extensively uses RAM as
a decoding cache to prevent repetitive decoding of the data,
it leads to higher RAM usage and potentially degrades the
performance when the per-episode data is large. For example,

for the bridge dataset, we see Robo-DM reduces the overall
throughput when the batch size increases. This may lead to
performance degradation for decoding for finer granularity,
such as only sampling one frame for each episode.

B. Case Study: Fine-tuning Octo with Robo-DM

Octo [1] is a transformer-based robot policy trained on
800k robot episodes from Open-X-Embodiment. We fine-
tune the pre-trained Octo-small model with 25.6M trainable
parameters. We fine-tune the entire model conditioned with
both images and language instructions. For each configuration,
we train with 50,000 iterations and measure the per-iteration
average latency.

Dataset Compression We use RT-1 [3] dataset, a dataset
containing 73,499 episodes. The dataset involves picking,
placing, and moving 17 objects with Google Robot. The
dataset contains 1 RGB video stream with resolution (320,
480). The original dataset is 111.06 GB. The final dataset size
of Robo-DM is 36.50 GB with 4.39 times size reduction. The
reason why the size reduction is smaller than other datasets
from Open-X-Embodiment is that the per-trajectory size is
small, with 1.51 MB on average per trajectory in RLDS.
Robo-DM needs more space to store metadata for seeking
and decoding.

Training Performance We run the training workload with
batch size 64. Dataloader in Octo loads from Tensorflow
dataloader and Robo-DM and lead to similar data loading
latency (0.02 seconds) per iteration and overall training
latency (0.10 seconds) per iteration. In validating the effect
of lossy compression to the training outcome, we use lossless
dataset for validation. The final image-conditioned Mean
Squared Error of validation dataset is 1.86 with original
lossless data and 1.91 with lossy data. Thus Robo-DM leads
to 2.6% increase in validation loss with lossy compression.

C. Case Study: Robo-DM with In-Context Robot Transformer
Training

Task We evaluate the training performance of Robo-DM,
hypothesizing the lossy compression of Robo-DM, despite
a high compression rate, could reduce the accuracy of the
trained model. Thus, we evaluate a model trained with 335
human-demonstrated trajectories with the lossy compression
of Robo-DM. The trained model is tasked to pick up a stuffed
toy tiger. Figure 6 shows the task setup with the Franka Emika
robot.

Data We collect 335 human-demonstrated trajectories with
one hand camera and one left-side-view camera. All video
streams are recorded at resolution (320, 180). The trajectories
were originally collected in HDF5 with gzip compression,
with a total size of 5.8G. Stored in Robo-DM’s format,
the dataset with lossless codec leads to 1.7G (3.41x space
reduction), and the size of lossy compression is 77MB (75.3x
space reduction).

Model We use the ICRT [7], a transformer model that per-
forms autoregressive prediction on sensorimotor trajectories.
We train for 200 epochs with image brightness and contrast
augmentation and a small proprioception noise (N(0,0.01)).

Original

~ Lossy Compression

Hand View

Left View

Fig. 6: ICRT Physical Experiment Setup with Robo-DM We setup ICRT
to pick up a stuffed toy tiger and place it into a black bowl with a Franka
Emika robot arm. The Figure shows the view from the left camera and wrist
camera used for training, for both the original dataset and reconstructed
images from Robo-DM.

Results We randomize the position of the stuffed toy
tiger at different places on the tabletop. We evaluate with
consecutive 15 trials on the model trained with lossy data.
The model is able to reliably identify the object, pick it up,
and place it in a bowl with a 15 out of 15 success rate (100%).

VI. CONCLUSION

In this paper we propose Robo-DM, which includes a new
format for robot data, and a toolkit for data collection, man-
agement, and loading. Robo-DM significantly outperforms
Open-X-Embodiment in terms of space saving. It also shows
performant loading speed compared to LeRobot, a framework
that also uses video compression. In the task of fine-tuning
Octo and policy training, Robo-DM reduces dataset size with
minimal training performance and accuracy degradation.

The file size reduction is mainly due to video compression.
In future work, we will accelerate video compression and
analyze the tradeoffs between parameters. In the evaluation,
we used the off-the-shelf video processing library, pyav
[48], without GPU acceleration. Recent works such as
Decord [49] and GPU acceleration by Nvidia NVDEC [50]
are demonstrated to be faster than pyav. Also in future work,
we will integrate and evaluate Robo-DM with larger-scale of
existing and prospective Open-X-Embodiment datasets.

VII. ACKNOWLEDGEMENT

This project benefited from discussions with Peter Schafhal-
ter, Silvery Fu, and You-Liang Tan. This work is supported
in part by donations from Google.

REFERENCES

[1] Octo Model Team, D. Ghosh, H. Walke, K. Pertsch, K. Black,
O. Mees, S. Dasari, J. Hejna, C. Xu, J. Luo, T. Kreiman, Y. Tan, et
al., Octo: An open-source generalist robot policy, https://octo-
models.github.io, 2023.

[2] O. X.-E. Collaboration et al., Open X-Embodiment: Robotic learning
datasets and RT-X models, 2024.

[3] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, C. Finn, K. Gopalakr-
ishnan, K. Hausman, A. Herzog, J. Hsu, B. Zitkovich, et al., “RT-
1: Robotics transformer for real-world control at scale,” Robotics:
Science and Systems (RSS), 2023.

[4] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, C. Finn, K.
Gopalakrishnan, K. Hausman, A. Herzog, J. Hsu, B. Zitkovich, et
al., “Rt-2: Vision-language-action models transfer web knowledge
to robotic control,” in Conference on Robot Learning, PMLR, 2023,
pp. 2165-2183.

[5]

[6]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

M. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna, S. Nair,
R. Rafailov, E. Foster, G. Lam, P. Sanketi, Q. Vuong, T. Kollar, et al.,
“Openvla: An open-source vision-language-action model,” Conference
on Robot Learning (CoRL), 2024.

A. Khazatsky, K. Pertsch, S. Nair, A. Balakrishna, S. Dasari, S.
Karamcheti, S. Nasiriany, M. K. Srirama, L. Y. Chen, et al., “Droid:
A large-scale in-the-wild robot manipulation dataset,” in Proceedings
of Robotics: Science and Systems, Delft, Netherlands, 2024.

L. Fu, H. Huang, G. Datta, L. Y. Chen, W. C.-H. Panitch, F. Liu,
H. Li, and K. Goldberg, “In-context imitation learning via next-token
prediction,” International Conference on Robotics and Automation,
2025.

“Gpt-4v(ision) system card,” 2023.

Google, “Gemini: A family of highly capable multimodal models,”
arXiv preprint arXiv:2312.11805, 2023.

H. Liu, C. Li, Q. Wu, and Y. J. Lee, “Visual instruction tuning,”
Advances in neural information processing systems, vol. 36, 2024.
J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, 1. Barr, Y. Hasson,
K. Lenc, A. Mensch, K. Millican, M. Reynolds, R. Ring, E.
Rutherford, et al., “Flamingo: A visual language model for few-
shot learning,” Advances in neural information processing systems,
vol. 35, pp. 23716-23 736, 2022.

D. Driess, E. Xia, M. S. M. Sajjadi, C. Lynch, A. Chowdhery,
B. Ichter, A. Wahid, J. Tompson, Q. Vuong, T. Yu, W. Huang,
Y. Chebotar, et al., “Palm-e: An embodied multimodal language
model,” in International Conference on Machine Learning, PMLR,
2023, pp. 8469-8488.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Roziere, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez,
A. Joulin, et al., “Llama: Open and efficient foundation language
models,” arXiv preprint arXiv:2302.13971, 2023.

J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

S. Sagiroglu and D. Sinanc, “Big data: A review,” in 2013 interna-
tional conference on collaboration technologies and systems (CTS),
IEEE, 2013, pp. 42-47.

The HDF Group, Hierarchical Data Format, version 5, 1997-2024.
S. Ramos, S. Girgin, L. Hussenot, D. Vincent, H. Yakubovich,
D. Toyama, A. Gergely, P. Stanczyk, R. Marinier, J. Harmsen,
O. Pietquin, and N. Momchev, “Rlds: An ecosystem to generate,
share and use datasets in reinforcement learning,” arXiv preprint
arXiv:2111.02767, 2021.

R. Cadene, S. Alibert, A. Soare, Q. Gallouedec, and T. Wolf, Lerobot:
Making ai for robotics more accessible with end-to-end learning,
https://github.com/huggingface/lerobot, 2024.
Apache Arrow, https://arrow.apache.org/, 2024-09-14.
HuggingFace SafeTensors, https / / github . com /
huggingface/safetensors, Accessed: 2024-09-14.

D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, and S.
Levine, “Scalable deep reinforcement learning for vision-based
robotic manipulation,” in Conference on robot learning, PMLR,
2018, pp. 651-673.

H. Walke, K. Black, A. Lee, M. J. Kim, M. Du, C. Zheng, T. Zhao,
P. Hansen-Estruch, Q. Vuong, A. He, V. Myers, K. Fang, et al.,
“Bridgedata v2: A dataset for robot learning at scale,” in Conference
on Robot Learning, PMLR, 2023, pp. 1723-1736.

M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, “ROS: An open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, 2009.
TensorFlow Datasets, a collection of ready-to-use datasets, https:
//www.tensorflow.org/datasets.

S. L. K. C. Gudi, S. Ojha, B. Johnston, J. Clark, and M.-A.
Williams, “Fog robotics: An introduction,” in /EEE/RSJ International
Conference on Intelligent Robots and Systems, 2017.

A. K. Tanwani, N. Mor, J. Kubiatowicz, J. E. Gonzalez, and
K. Goldberg, “A fog robotics approach to deep robot learning:
Application to object recognition and grasp planning in surface
decluttering,” in Proc. IEEE Int. Conf. Robotics and Automation
(ICRA), 1IEEE, 2019, pp. 4559-4566.

J. Ichnowski, W. Lee, V. Murta, S. Paradis, R. Alterovitz, J. E.
Gonzalez, 1. Stoica, and K. Goldberg, “Fog robotics algorithms for
distributed motion planning using lambda serverless computing,”

(28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]
[36]
[37]

(38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]
[48]

[49]

[50]

in Proc. IEEE Int. Conf. Robotics and Automation (ICRA), 2020,
pp. 4232-4238.

N. Tian, A. K. Tanwani, J. Chen, M. Ma, R. Zhang, B. Huang,
K. Goldberg, and S. Sojoudi, “A fog robotic system for dynamic
visual servoing,” in 2019 International Conference on Robotics and
Automation (ICRA), IEEE, 2019, pp. 1982-1988.

S. L. K. C. Gudi, S. Ojha, B. Johnston, J. Clark, and M.-A. Williams,
“Fog robotics for efficient, fluent and robust human-robot interaction,”
in 2018 IEEE 17th International Symposium on Network Computing
and Applications (NCA), IEEE, 2018, pp. 1-5.

K. E. Chen, Y. Liang, N. Jha, J. Ichnowski, M. Danielczuk,
J. Gonzalez, J. Kubiatowicz, and K. Goldberg, “FogROS: An
adaptive framework for automating fog robotics deployment,” in
2021 IEEE 17th International Conference on Automation Science
and Engineering (CASE), 1IEEE, 2021, pp. 2035-2042.

K. Chen, R. Hoque, K. Dharmarajan, E. Llontop, S. O. Adebola,
J. Ichnowski, J. D. Kubiatowicz, and K. Goldberg, “FogROS2-SGC:
A ROS2 cloud robotics platform for secure global connectivity,”
2023 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 1-8, 2023.

K. Chen, M. Wang, M. Gualtieri, N. Tian, C. Juette, L. Ren, J. Kubia-
towicz, and K. Goldberg, “FogROS2-LS: A location-independent fog
robotics framework for latency sensitive ROS2 applications,” Proc.
IEEE Int. Conf. Robotics and Automation (ICRA), 2024.

K. Chen, K. Hari, R. Khare, C. Le, T. Chung, J. Drake, S. Adebloa,
J. Ichnowski, J. Kubiatowicz, and K. Goldberg, “FogROS2-Config:
A toolkit for choosing server configuration for cloud robotics,” Proc.
IEEE Int. Conf. Robotics and Automation (ICRA), 2024.

H. R. Kam, S.-H. Lee, T. Park, and C.-H. Kim, “Rviz: A toolkit for
real domain data visualization,” Telecommunication Systems, vol. 60,
no. 2, pp. 337-345, 2015.

Foxglove Technologies Inc, Foxglove, https://foxglove.dev.
S. Lhomme, D. Rice, and M. Bunkus, “Extensible binary meta
language,” RFC Editor, RFC 8794, Jul. 2020.

Matroska Video Container, https://www.matroska.org/
index.html, Accessed: 2024-09-14.

ITU-T, “Advanced video coding for generic audiovisual services,”
International Telecommunication Union, Geneva, Switzerland, Rec-
ommendation H.264, 2003.

ITU-T, “High efficiency video coding,” International Telecommuni-
cation Union, Geneva, Switzerland, Recommendation H.265, 2023,
Version 9.

Alliance for Open Media, Avl bitstream & decoding process
specification, https://aomediacodec.github.io/avl-
spec/, Accessed: [Insert Date], 2019.

Library of Congress, Ff video codec 1, version 0, 1 and 3, https:
/ /www .loc.gov/preservation/digital / formats/
£dd/fdd000341.shtml, Accessed: [Insert Date], 2024.

M. Niedermayer, D. Rice, and J. Martinez, “Ffv1 video coding format
versions 0, 1, and 3,” RFC Editor, RFC 9043, Aug. 2021.

Linux mmap(2) Manual, https://man7.org/linux/man—
pages/man2/mmap.2.html, Accessed: 2024-09-14.

LeRobot Video Benchmark, https : / / github . com /
huggingface / lerobot / tree / main / benchmarks /
video, Accessed: 2024-09-13.

J. Luo, C. Xu, X. Geng, G. Feng, K. Fang, L. Tan, S. Schaal, and
S. Levine, “Multi-stage cable routing through hierarchical imitation
learning,” IEEE Transactions on Robotics, 2024.

J. Pari, N. M. Shafiullah, S. P. Arunachalam, and L. Pinto, “The
surprising effectiveness of representation learning for visual imitation,”
Robotics: Science and Systems, 2018.

L. Y. Chen, S. Adebola, and K. Goldberg, Berkeley UR5 demonstra-
tion dataset, https://sites.google.com/view/berkeley-ur5/home.
Pyav: Pythonic bindings for FFmpeg’s libraries, https : / /
github.com/PyAV-0rg/PyAV, Accessed: 2024-09-14.
Decord: An efficient video loader for deep learning with smart
shuffling that’s super easy to digest, https://github.com/
dmlc/decord, Accessed: 2024-09-14.

NVIDIA Video Codec SDK, https://developer .nvidia.
com/video-codec-sdk, Accessed: 2024-09-14.

