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Fig. 1: In-Context Robot Transformer (ICRT) is a novel robot foundation model designed for in-context imitation learning without
fine-tuning. In ICRT, the prompt includes 2-3 image-action sequences of teleoperated demonstration trajectories with the object of interest.
Given a previously unseen task demonstration, ICRT performs next-token prediction to execute the task with real-time continuous control.

Abstract— In-context imitation learning is the capability to
perform novel tasks when prompted with task demonstration
examples. In-Context Robot Transformer (ICRT) is a causal
transformer that performs autoregressive prediction on sen-
sorimotor trajectories, which include images, proprioceptive
states, and actions. This approach supports flexible and training-
free execution of new tasks at test time. Experiments with
a Franka Emika robot demonstrate that ICRT can adapt
to new environment configurations that differ from both the
prompt and the training data. In a multi-task environment setup,
ICRT significantly outperforms current state-of-the-art robot
foundation models on generalization to unseen tasks. Code, data,
and appendix are available on https://icrt.dev.

I. INTRODUCTION

Learning-based single and multi-task robot policies have
become increasingly capable [1–10]. This improvement in
robot capabilities can largely be attributed to progress in
related fields, particularly in vision and language modeling.
Inspired by the recent development of large language models
(LLMs) and large vision models (LVMs) [11–13], which
formulate natural language processing and vision problems
as next-token-prediction, recent works also have formulated
robot learning as next-token-prediction problems and achieved
state-of-the-art performance [7, 8, 14, 15]. Concurrently, there
has been a surge in collecting large-scale generalist robot
datasets [16–23] and pre-training models on them [15, 24–27].

Despite being pre-trained on large datasets and showing
some generalization ability, it is still challenging to teach these
models to perform unseen tasks in different environments
without additional training. New human demonstrations
via teleoperation or new data collected from hand-crafted
motion primitives, as well as subsequent fine-tuning of
pretrained models, are often needed to complete the new
tasks. This process adds time and complexity to the workflow,
making it challenging to apply these methods in real-world
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environments. Ideally, given some demonstrations, the robot
should be able to perform a new task immediately. In their
respective domains, LLMs and LVMs [11–13] have exhibited
a similar ability, using in-context learning, where the model
to adapt to the task corresponding to the prompt provided at
inference time without additional fine-tuning.

Is the in-context learning capability of next-token prediction
models limited to vision and language domains? In this paper,
we introduce the In-Context Robot Transformer (ICRT) to
explore how next-token prediction models can be extended to
perform real-robot in-context learning. For ICRT, the context
is provided as robot trajectories corresponding to a new
task. The model infers from this context to perform the task
in a different environment configuration without requiring
additional training. Each robot trajectory is a sequence of
image observations, robot proprioceptive states, and actions.
This trajectory implicitly encodes task primitives and the
objects the robot needs to interact with. The model extracts
this information from the prompt and then executes actions
following a similar pattern in the new environment.

Compared to existing few-shot imitation learning ap-
proaches, ICRT offers a framework that avoids complicated
loss functions, prior knowledge, and the need to identify
key points or key frames, and operates directly on raw
robot trajectories for continuous control. Additionally, unlike
existing next-token prediction models for robot learning, ICRT
features a long context window, allowing it to train on multiple
sensorimotor trajectories from the same task and use one or
more sensorimotor trajectories as prompts during inference.

Importantly, we find that certain properties of the pre-
training dataset are crucial for enabling in-context learning on
real robots. Specifically, datasets that allow multiple tasks to
be performed from the same initial observation are particularly
beneficial. Unlike existing single-task datasets or many multi-
task datasets where each environment uses one unique object
for robot interaction, complex environments require the model
to rely on the prompt to correctly identify the task and
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determine the appropriate object for interaction.
We make the following contributions:
1) We introduce ICRT, a novel robot foundation model that

performs in-context learning on a real robot, which can
effectively learn from prompt trajectories and perform
unseen tasks without fine-tuning.

2) We provide a new multi-task robot dataset and a
training paradigm for fostering multi-task and in-context
capability at inference time.

3) Physical experiments on a Franka Emika robot suggest
that ICRT can learn from the provided context and
perform unseen tasks at various generalization levels.

II. RELATED WORKS

A. Multi-Task Imitation Learning for Robotics

Imitation learning is an effective paradigm for equipping
robots with various skills. The simplest algorithm in this
domain, behavior cloning, has been successful across a
wide range of tasks [28–30]. In recent years, alternative
architectures such as energy-based models [31] and diffu-
sion models [1] have also been proposed. Typically, these
approaches require training a separate model for each task,
although multi-task policies can be distilled from these task-
specific models after training [32].

Recent advancements have shown that using transformers
for next-token prediction in sequence modeling has been
particularly effective in both language and vision domains,
especially for multi-task learning [12, 33, 34]. In pursuit of
developing generalist agents and multi-task robot policies,
robot action planning is framed as a next-token prediction task
using transformer-based architectures trained on large multi-
task robot datasets [5, 7, 8, 14, 15, 35–40]. Octo [15] and
OpenVLA [14] represent the state-of-the-art among multi-task
robotic policies. Octo [15] conditions on both goal images
and language instructions, utilizing a transformer architecture
with a diffusion head that fuses these inputs with current
image observations to predict robot actions. OpenVLA[14]
conditions solely on language instructions, fine-tuning a pre-
trained vision-language model to predict robot actions based
on visual observations and language inputs.

B. In-Context Robot Learning

Despite training on large datasets, multi-task policies often
struggle when faced with new objects, tasks, or environments,
frequently requiring fine-tuning. Meta-learning has been
shown to increase fine-tuning efficiency for generalization
to new tasks [41–43], which has led to progress in few-shot
imitation learning. To simplify the application of learned
policies in the real world, recent approaches focus on
methods that avoid fine-tuning model parameters for task
generalization. Instead, these methods inform the model
by providing demonstrations of tasks in the prompt [44,
45]. Brown et al. [33] refers to this as “in-context learning”,
distinguishing it from approaches that rely on subsequent
stages of parameter fine-tuning.

Prior in-context robot learning methods often employ
contrastive learning to train context encoders, which identify

the most similar training tasks to the test task in the latent
space [37, 46]. However, how to effectively integrate these
methods within the next-token-prediction framework remains
unclear. Valassakis et al. [47] achieved one-shot in-context
learning by training a visual servoing network to align the
robot’s end-effector with the object’s relative pose during the
demonstration, but this approach requires an additional object
segmentation model. Di Palo et al. [44] introduced Keypoint
Action Tokens, demonstrating in-context imitation learning
using a large language model by representing demonstration
trajectories as 3D coordinates with few-shot prompting.
Unlike these approaches, ICRT operates without additional
perception modules, processing raw image observations
directly. Additionally, Vid2Robot [45] developed an encoder-
decoder transformer that uses a demonstration video of a
human and the current robot state as the prompt to generate
robot actions. However, this method requires many auxiliary
losses while ICRT uses a simple next-token prediction loss.
More recently, methods like MOKA [48] have explored
prompting closed-source VLMs with in-context examples to
generate waypoints for manipulation tasks. However, relying
on off-the-shelf VLMs can introduce significant latency in
control, potentially slowing task execution and increasing
overall completion time.

In this paper, we focus on enhancing next-token-prediction
models to perform real-world in-context imitation learning
with robots. ICRT bypasses the need for additional context en-
coders by directly using robot sensorimotor trajectories from
new tasks as prompts for the transformer-based model. ICRT
is closely related to the seminal works, One-Shot Imitation
Learning [49] and Prompting Decision Transformer [50]. [49]
predicts the next action by applying cross-attention between
a demonstration sequence on a new task and the current
environment’s state, while [50] employs a short trajectory
prompt to encode task-specific information for guiding policy
generation in offline reinforcement learning, using full state
information and known reward functions. While both of these
methods show their effectiveness in simulation, it is hard
to have full-state information and known reward functions
for all real-world robot manipulation tasks. To address
these challenges, ICRT does not model rewards, utilizes a
significantly longer context window, and demonstrates in-
context learning capabilities in physical experiments using
image observations.

III. PROBLEM STATEMENT

We consider in-context imitation learning in a real-robot
manipulation setting. The first step is to train a model with
in-context learning capabilities using a multi-task robotic
dataset. At test time, the model can handle unseen tasks
in novel environment configurations by using a few new
human-teleoperated robot demonstrations as prompts. Here,
environment configuration refers to the objects present in the
scene and their spatial arrangement. Notably, this process
is achieved without any additional fine-tuning on the new
demonstrations.



Fig. 2: Our physical setup with the Franka Emika robot, the wrist and side camera and the objects used in training and evaluation. We
consider 6 primitives for training and choose “pick up and place” and “poke” as the primitives for evaluation (dark green).

We define motion primitives as distinct robot actions
utilized to accomplish various tasks. Each task is characterized
by 1) a specific motion primitive and 2) the set of objects
the robot interacts with using that primitive. By altering the
environment configuration at test time compared to the one
in the prompt, we assess the model’s ability to select the
appropriate motion primitive and identify the correct object
for interaction. In this work, we consider new tasks to be
tasks involving unseen objects but using motion primitives
from the training data (for example, training on picking up a
tiger toy and testing on picking up a cube).

We make the following assumptions for ICRT experiments:
1) The model is trained on a diverse multi-task demonstra-

tion dataset. Each trajectory contains RGB observations
from a fixed camera and a wrist-mounted camera,
proprioception and action.

2) Tested primitves are within distribution and the reach-
able workspace of the robot.

IV. APPROACH

In this section, we first introduce the data composition to
facilitate in-context imitation learning. We then introduce the
architecture and training objective for the transformer-based
policy to effectively leverage the data.

A. Data Formulation

For model training, we consider a dataset D of visuomotor
trajectories T . Each trajectory of length t is a sequence of
camera images it, proprioceptive robot states st, and actions
at: T = (i1, s1, a1, ..., it, st, at). We use the absolute end-
effector pose as the robot’s proprioceptive state and the delta
robot end-effector pose between time steps as the action,
which consists of delta translation, delta rotation and the
continuous gripper action. We assume a known grouping
of the trajectories so that the dataset can be partitioned into
disjoint sets of tasks D =

⋃K
k=1 Sk, with Sk∩Sℓ = ∅, k ̸= ℓ,

where Sk = {Tk1 , ..., Tkn}. In practice, this grouping can be
retrieved from the semantic labels of the dataset. In this work,
we utilize the existing large robotic dataset DROID [51] and
a multi-task dataset manually collected in our robot setup,
which we name ICRT-Multi-Task (ICRT-MT).

DROID [51] is a joint effort from different organizations
and contains 76k real-world demonstrations. We randomly
sample 10k demonstrations from DROID after filtering

out demonstrations shorter than 30 steps and longer than
450 steps. DROID dataset labels the task through human-
specified language instructions, which may be different for
the same task. We organized the DROID data by grouping
demonstrations based on their language instructions CLIP text
embedding cosine similarity. Specifically, we use a threshold
of 0.9 for grouping demonstrations. To further facilitate in-
context learning, we make sure that each task group contains
at least 4 trajectories so that there are sufficient trajectories
to serve as prompts for each other. This results in roughly
2k trajectories that we use for pre-training ICRT.

Many trajectories in the DROID dataset are collected in
a single-task setup, where only one task can be completed
in a scene (e.g. only one object is presented). In such a
setup, the model can learn a shortcut solution to perform
the task, by only focusing on the current observation but
not the prompt. Therefore, multi-task data is crucial for the
model to learn from the prompt. We manually collected a
multi-task dataset ICRT-Multi-Task (ICRT-MT) using the
DROID setup (Figure. 2). This dataset has 1098 trajectories
in total, and contains 29 tasks with 6 primitives: picking, pick-
and-place, stacking, pushing, poking, opening and closing
drawers. Objects used in the data collection and examples
of the primitives are shown in Figure. 2. In ICRT-MT, each
environment is set so that there exist more than 2 possible
tasks for the current observation so that the model has to
distinguish and learn the motion from the prompt.

During the training, for each trajectory, we independently
apply vision augmentation on the image observations by
augmenting the brightness and contrast. We additionally apply
random crops and scaling to the side camera observation.
We also apply proprioception noise sampled from a normal
Gaussian distribution N (0, 0.005). For each epoch, we
randomly shuffle the order of trajectories from each task
and concatenate them to form the training sequence. For each
batch, we sample a subsequence of length L = 512 as the
input to the model, where L is the sequence length defined
as the number of observation, state, and action tuples. In
practice, 512 steps usually contain up to 5 trajectories from
the same task. We randomly select the first k trajectories
and label them as the prompt within the sequence. At least
one complete trajectory is included in the prompt. This data
grouping aims to capture inter-trajectory patterns, encouraging
the model to generate action conditioned on the prompt



Fig. 3: Method Overview: (Left) We encode camera observations with a pre-trained vision transformer. Additionally, we encode
proprioception with an MLP. We concatenate the visual latent and the proprioception’s latent and use attention pooling to extract a feature
fs as the current state representation. We encode the current action with an MLP to get fa. (Right) We concatenate multiple trajectories of
the same task and randomly sample the first k trajectories as the prompt. A causal transformer autoregressively predicts the next series of
tokens. We decode the tokens that are at the position of the state features to generate the next h = 16 action via an MLP.

trajectories. This approach differs from traditional behavior
cloning methods, which typically use short input sequences
that focus on modeling intra-trajectory behaviors.

B. Model Architecture

We construct the ICRT model with three parts: a pre-trained
vision encoder, a series of projectors for each input modality,
and a causal transformer backbone (Figure 3).

Vision Encoder The model processes multi-view im-
age observations through a pre-trained vision transformer.
However, most visual pre-trained networks are trained on
ImageNet or human videos [24, 27, 52, 53], which exhibit a
significant domain gap when compared to typical images from
robot datasets, where the images frequently include robots or
grippers. To minimize the domain gap, we pre-train a vision
transformer [54] (ViT-Base) on an equal mix of ImageNet [55]
and Open X-Embodiment [40] data, using CrossMAE as an
efficient pre-training method [56]. During the training of the
ICRT model, we freeze the vision encoder for efficiency. The
vision encoder outputs the entire feature map for each of
the cameras and is then fed into the proprioception projector
(Figure 3 left).

Modality-Specific Projectors To project image observa-
tions, the robot’s proprioceptive state, and actions into a shared
latent space for sequence modeling, we design modality-
specific projectors. At each timestep, the model takes as
input a token representing either an observation or an action.
To produce a single state token that captures fine-grained
visual information and the proprioceptive state of the robot,
we use attention pooling [57] between all visual tokens from a
single camera’s observation and a proprioception embedding
produced by a multi-layer perceptron (MLP). The resulting
embeddings for each camera are concatenated to produce a
single state token f t

s of dimension equal to the transformer
latent dimension. Similar to proprioception, the action is
embedded with an MLP into an action token f t

a. This process
produces a sequence of state and action tokens that are passed
into the transformer.

Transformer Model The encoded sequence of state and
actions is passed into a Transformer model [58], following
the design of Llama2 [12]. The transformer takes as input
the sequence of state and action features (f1

s , f
1
a , · · · , f t

s, f
t
a)

that are produced by the modality-specific projectors. We

add MLP decoders to produce state and action outputs from
the last layer of the transformer at the appropriate positions.
We denote the transformer with the decoder heads as gθ.
Therefore, the desired outputs are the shifted sequence of
proprioceptive states and actions (a1, s2, a2, · · · , at, st+1).
This naturally forms a next token prediction problem, as
gθ(f

1
s ) predicts a1 and gθ(f

1
s , f

1
a , · · · , fn

s ) predicts an+1. In
practice, we find it beneficial to predict the next h actions at
each time step, and use temporal ensembling [2] to execute
the final action.

Inspired by Octo [15] and vision transformers [54], we
consider a randomly initialized Llama2 model of 12 layers
with a latent dimension of 768, which we name Llama2-Base.
In addition, multiple works have shown that multimodal inputs
can be aligned to large-language models [8, 34, 59–61]. Multi-
modal language model, Palm-E [10] has shown success in
enhancing generalization when being directly incorporated
into robotic control [8]. Therefore, we also investigate the
effectiveness of using a large-language model for in-context
robot learning by initializing the transformer with a pre-
trained Llama2-7B. Due to the large domain gap between
natural language and robot trajectories, a frozen language
model may not be sufficient. Therefore, similar to prior work
in multimodal alignment, we fine-tune the language model
with LoRA [62], with a rank of 32. Due to compute resource
limitations, we are unable to fully fine-tune the model.

Loss Function To provide more supervision signals so
that the model can better respond to the trajectory “prompt”
we provide at test time, we reference works in training multi-
turn conversation chatbots [34, 63], where they only compute
loss on the response generated by the chatbot, instead of the
prompt. Recall that in Section IV-A, we randomly sample the
subsequence of the concatenated trajectories as the prompt
trajectory. Analogously, we only compute action prediction
with L1-loss for the actions after the prompt trajectories.

Inference The simplicity of the next-token prediction
objective makes inferencing with ICRT straightforward at
test time. As shown in Figure. 4, we provide one or more
human-teleoperated demonstrations in the form of robot
sensorimotor trajectories (formatted identically to the training
data), along with the current image observations and the
robot’s proprioceptive state as inputs. The model then predicts
the next action, which is executed by the robot. After each



Fig. 4: Example inference pipeline of ICRT on the task of picking
up the radish and putting in the gray bowl. A human teleoperated
demonstration trajectory consisting of image observations, propri-
oception and actions are provided as the prompt. ICRT takes the
prompt and the current observation in a different environment to
accomplish the task.

action, the policy receives updated image observations and
proprioceptive state, allowing it to iteratively predict and
execute subsequent actions.

A key advantage of this framework is its use of the
transformer’s sequential processing capability. Instead of
reprocessing the entire sequence history for each model
evaluation, as seen in previous works [7, 8, 14, 15], the model
employs a key-value (KV) caching mechanism, as discussed
in [12]. This mechanism stores previous outputs, allowing
the model to compute only the outputs for the new token.
This approach significantly reduces computational overhead,
lowering the complexity from quadratic to linear relative to
the sequence length.

C. Training and Inference Details

All models are trained on 4 NVIDIA A100 80GB GPUs.
ICRT pre-training on DROID takes 56 minutes and fine-
tuneing on ICRT-MT takes 18 hours. ICRT-Llama7B takes
roughly 28 hours to finetune. All tests are performed on a
workstation with NVIDIA RTX 3090Ti and Intel i5-12400F
with 64GB memory. By using KV cache, ICRT can inference
at 39.6 Hz and ICRT-Llama2 can inference at 10.7 Hz,
allowing them to perform real-time close-loop control.

V. EXPERIMENTS

In this section, we design an experimental setup to evaluate
the in-context learning capabilities of the proposed models and
compare them against several baselines. Instead of focusing on
the difficulty of learning a specific task primitive, we design
the experiments to assess the policy’s ability to accomplish
novel tasks based on the provided prompt trajectories.

Experiment Design We consider two action primitives:
a pick-and-place primitive and a poking primitive. For each
action primitive, we design six unseen tasks (as defined in
Section III), with three tasks evaluating in-domain object
generalization (selected from yellow cube, red cube, black
cube, pink bowl, and blue bear and three objects unseen
during training (selected from radish, blue sponge, grey dog,
and black dog).

Each task has five difficulty tiers. In the pick-and-place
task, the model must identify the correct object to grasp
and where to place it in a multi-object or multi-placement
scenario. The tiers include: 1) no distractors, 2) one distractor

Pick and Place Poke Average
Goal Condition 33.3 (±6.5) 6.7 (±4.6) 20.0 (±4.3)
Octo [15] 5.0 (±2.7) 13.3 (±6.2) 9.2 (±3.5)
OpenVLA [14] 11.7 (±4.6) 3.3 (±3.3) 7.5 (±2.9)
ICRT 65.0 (±7.3) 93.3 (±4.6) 79.2 (±4.6)

TABLE I: Success Rates. ICRT outperforms two state-of-the-art
robot foundation models that are conditioned on goals or language
in both pick-and-place and poking tasks. We evaluated each task
primitive using six tasks not seen during training, conducting five
trials per task for a total of 30 trials per primitive and 60 trials
overall to calculate average performance. For each model, we report
the mean success rate for each task, the overall success rate, and
the corresponding standard error in parentheses.

object, 3) two distractors, 4) three distractors, and 5) one
distractor placement position. In the poking task, the robot
closes the gripper, pokes the object, lifts the end-effector, and
opens the gripper, with tiers involving 0-4 distractor objects.

The pick-and-place task is scored with 0.5 for a correct
pick and 1 for a successful placement. In the poking task,
failure is marked if the wrong object is poked. The model
has 25 seconds (375 steps) for retries. Each difficulty level
is attempted once, and we report the average success rate
per task, along with the average success rate and standard
deviation across the six tasks for each action primitive.

Models The default ICRT is a randomly initialized Llama2-
Base model pretrained on DROID and fully fine-tuned on
ICRT-MT. We evaluate the impact of model initialization and
training datasets by introducing the following three variants:
1) ICRT-Llama2, a pre-trained Llama2-7B language model
fine-tuned on ICRT-MT with LoRA; 2) ICRT (DROID), a
randomly initialized Llama2-Base model trained only on the
DROID dataset; and 3) ICRT (MT), a randomly initialized
Llama2-Base model trained only on the ICRT-MT dataset.

We consider 3 baseline models. We train a goal-conditioned
policy, where the goal observations are always prepended
to the sequence, and each sequence is from one trajectory.
This resembles the normal goal-conditioned imitation learning
setup. Additionally, we finetune Octo [15], the state-of-the-
art goal-image and language conditioned policy, and Open-
VLA [14], the state-of-the-art language conditioned multi-
task imitation learning policy. Octo is fine-tuned using their
official fine-tuning recipe. We incorporate action chunking
into OpenVLA by asking it to predict the next 16 actions,
which performs better than vanilla OpenVLA which predicts
only the next step. Both of these methods are representative
of robot policies that use next-token prediction objectives.

Prompt Generation For each task, we collect 3 demonstra-
tions (with zero, one distractor object, a distractor placement
for pick-and-place, or two distractor objects for poking) as the
prompt in total before running the experiment. Please refer
to the website for a visual example. During testing, a random
demonstration is drawn as a prompt to assess the model’s
ability to generalize to different prompts. It’s important to note
that the environment setup during policy rollout differs from
the prompts’ setup, ensuring that the evaluation measures the
model’s understanding of task-relevant information from the
prompt, rather than simply copying actions from it.

Results We present the results in Table I. For the pick-
and-place primitive, we observe that the goal-conditioned
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Pick and Place Poke Average
ICRT-Llama2 43.3 (±7.9) 73.3 (±8.2) 58.3 (±6.0)
ICRT (DROID only) 0.0 (±0.0) 0.0 (±0.0) 0.0 (±0.0)
ICRT (MT only) 76.7 (±7.1) 70.0 (±8.5) 73.3 (±5.5)
ICRT +Prompt Loss 21.7 (±6.2) 23.3 (±7.9) 22.5 (±5.0)
ICRT 65.0 (±7.3) 93.3 (±4.6) 79.2 (±4.6)

TABLE II: Ablation Study. We ablate three key design choices:
fine-tuning ICRT using a language model, training solely on the
relevant dataset or the fine-tuning dataset, and the impact of including
prompt loss in the training process. We report the mean success
rates and their corresponding standard errors for the pick-and-place
and poke tasks, as well as the overall average performance.

policy generally succeeds in identifying the correct object
to grasp when no distractor objects are present. However,
its performance degrades significantly as the number of
distractors increases. When the goal image only specifies
the task but not the specific way to achieve it in the current
environment, goal-conditioned policies often fail to execute
the task effectively.

Octo struggles with determining which object to inter-
act with and where it should be placed, highlighting the
challenges posed by our experimental setup for multi-task
policies. OpenVLA, while often moving towards the correct
object, frequently fails in grasping the object or mistakenly
performs the wrong task (e.g., grasping instead of poking,
and vice versa). This indicates that OpenVLA may require
more demonstrations (more than 50) per task to achieve better
performance, and that relying solely on language conditioning
may not be sufficient for generalization to new tasks.

The results suggest that ICRT outperforms the goal-
conditioned policy in identifying the correct object to pick up
and the appropriate placement location. The poking task
presents a significant challenge for the goal-conditioned
policies, as the goal position often closely resembles the start
configuration. However, after conditioning on the prompt
trajectory, ICRT is able to correctly identify the task as
poking, and the results indicate that it consistently reaches
the correct target object while ignoring distractors. Despite
this, we do observe some failure modes with ICRT, such as
missing the grasp of the target object, grasping the wrong
object, or placing objects in incorrect locations. Specifically,
when a distractor object shares the same color but has a
different shape, the model struggles to accurately determine
which object to grasp. This implies that additional fine-tuning
of the vision encoder might be required to enhance model
performance, a conclusion also reached by OpenVLA [14].

VI. ABLATIONS

In this section, we provide additional experiments presented
Table II that ablate on a few core design choices. We provide
additional ablation studies on the official website.

A. Model Initialization

We conducted ablation studies to examine the impact of
using a pretrained Llama2 on language data and fine-tune it for
robot sensorimotor sequence modeling. The results, presented
in Table II, show that although ICRT-Llama2-7B achieves
a lower training loss, its performance is worse compared to
its smaller counterparts. This discrepancy may be attributed

to a lower inference frequency of ICRT-Llama2 (10.7 Hz vs
39.6 Hz). Future work can focus on optimizing the inference
speed of ICRT-Llama2 to improve performance.

B. Training Dataset

We find that training on the DROID subset (see Section IV-
A) is insufficient for completing any of the test tasks;
the policy (ICRT (DROID)) shows no progress across all
tasks. This suggests that although the DROID subset may
offer greater visual diversity, the unique structure of ICRT-
MT—where multiple tasks are performed from the same
initial observation—is particularly beneficial in developing
the in-context learning capabilities of a next-token prediction
robot model.

ICRT (MT) shows similar performance to ICRT that is
pre-trained on DROID, especially for the pick-up and place
primitive, even surpassing ICRT on the put radish in grey
bowl task. However, ICRT (MT) does not perform as well
on the poking primitive. The results suggest that it may be
beneficial to pre-train the autoregressive model on a large
dataset, as a diverse dataset may help the transformer to
perform better alignment between visual features and control.

C. No Prompt Loss

Following the design of many multi-turn conversation
large language models or vision language model fine-tuning
works [34, 63–65], we do not calculate the loss for the
predicted action in the prompt trajectories but only do so on
the predictions after the prompt trajectories. We mark the
model that calculates loss on the prompt as ICRT +Prompt
Loss and the default model as ICRT. The results are shown
in Table II. We find that only predicting the trajectories after
the designated prompt trajectories can significantly improve
the model’s performance. We hypothesize that in the situation
where there is a loss on the prompt trajectories, the model
is forced to do unconditional generation based on current
observations for those prompts. This may cause the model
to stop paying attention to the prompt, especially when there
are multiple possible tasks available.

VII. LIMITATIONS AND CONCLUSION

While results suggest that ICRT learns from the prompt
trajectories and generalizes to unseen objects, tasks, and
certain primitives that resemble the ones in training1, it is
still unclear how to generalize to completely unseen action
primitives. Future works should investigate how scaling model
capacity and scaling dataset can help with primitive-level
generalization. In addition, ICRT assumes a fixed robot
morphology with a fixed impedance controller. Future works
can also investigate how to facilitate transfer between different
robot morphologies by learning a unified policy on different
robots. ICRT-Llama2 has a low inference frequency which
may contribute to its low performance. We hope to speed up
ICRT-Llama2 at inference time in the future.

1Please refer to the appendix and videos on the website for more detail.
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