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Abstract— In Gasket Assembly, a deformable gasket must
be aligned and pressed into a narrow channel. This task is
common for sealing surfaces in the manufacturing of auto-
mobiles, appliances, electronics, and other products. Gasket
Assembly is a long-horizon, high-precision task and the gasket
must align with the channel and be fully pressed in to
achieve a secure fit. To compare approaches, we present 4
methods for Gasket Assembly: one policy from deep imitation
learning and three procedural algorithms. We evaluate these
methods with 100 physical trials. Results suggest that the
Binary+ algorithm succeeds in 10/10 on the straight channel
whereas the learned policy based on 250 human teleoperated
demonstrations succeeds in 8/10 trials and is significantly
slower. Code, CAD models, videos, and data can be found at
https://berkeleyautomation.github.io/robot-gasket/.

I. INTRODUCTION

Tasks such as clothes folding, thread untangling, and cable
tracing have applications in manufacturing, logistics, and do-
mestic applications, but present unique challenges for robots
due to the complex physics and large configuration spaces of
deformable objects. One such deformable manipulation task
is the assembly of gaskets, deformable components that fill
the space between two or more mating surfaces to provide
a seal, generally to prevent leakage from or into the joined
objects while under compression [1]. Gaskets compensate
for small gaps or imperfections in mating surfaces and play
critical roles in industries such as automotive and appliance
manufacturing (where they are essential for sealing windows,
engines, and fuel systems), plumbing, power generation, and
construction. Almost all Gasket Assembly today is performed
by humans.

We propose a robot gasket assembly task where a robot
must pick and place the gasket, a 1D deformable object,
into a channel of similar length and width, such that the
gasket snugly and completely fills the entire channel. The
setup can be easily and reliably replicated using common
materials and a 3D printer with the provided CAD model.
The task requires pick-and-place, press, and slide moves to
be performed in succession. This is a high-precision, long-
horizon task with a large state space, complicated dynamics,
and low error tolerances[2].

Gasket Assembly qualifies as a dull/dreary repetitive task
[3] and is thus a candidate for robotic automation with the
goal of reducing worker fatigue and cost as a result of the
automation. We propose four approaches to automating the
gasket assembly task: one learned implementation and three
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Fig. 1: Gasket Assembly Example. This is an example of the Binary+
procedural algorithm rollout on the curved channel. Initially, the gasket is
separate from the channel (1). The robot picks the gasket’s midpoint (2),
places it into the channel’s midpoint (3), and presses down to insert (4).
Then an endpoint of the gasket is picked, placed, and pressed into the
endpoint of the channel (5,6,7); the same is done with the second gasket
endpoint (8,9,10,11). We omit the remaining pick-place-press steps at the
quarter and eighth points, as well as the second press that occurs at each
point for reinforcing insertion. Finally, the gripper returns to the middle of
the channel (12) and slides from the middle to one end (13). It returns to
the middle and slides to the other endpoint (14,15). The end result is a
successfully assembled gasket (16).

procedural. The procedural approaches differ primarily in the
strategy that each uses to choose and order the pick-and place
and press motions on the gasket, while the learned end-to-
end approach utilizes Diffusion Policy [4] to learn a gasket
insertion policy from 250 human demonstrations.

This paper makes the following contributions:
1) A novel formulation of a gasket assembly task that is

easy to replicate.
2) A deep imitation learning policy generated from 250

human-teleoperated demonstrations.
3) Three analytic/procedural algorithms for the same task.
4) Experimental results comparing the learned policy and

the procedural algorithms based on 100 physical trials
that suggests procedural algorithms can be superior in
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terms of performance.

II. RELATED WORK

A. Deformable Linear Object Perception and Manipulation

Deformable objects can be categorized into three distinct
types based on their dimensions: 1D objects (e.g., ropes, ca-
bles, strings, and electrical cords [2, 5–7]), 2D objects (e.g.,
fabrics and clothing [8]), and 3D objects (e.g., bags [9–11]).
In this paper, we focus on the 1D class of deformable objects,
also known as deformable linear objects (DLOs), since they
best represent gaskets. We use the terms “DLO” and “gasket”
interchangeably in this paper.

There have been recent advancements in robotics for a
variety of manipulation tasks involving DLOs, such as knot
tying [6], rope untangling [2], and the production of wire
harnesses [7]. Nonetheless, DLO perception and manipula-
tion remain open research areas. In this paper, we explore
the assembly of gaskets, expanding upon the current scope
of robotic manipulation for DLOs.

The typical approach for handling DLOs involves a three-
step process: state estimation, path planning, and manipu-
lation to achieve the desired outcome [12, 13]. Achieving
the target state of a DLO can be complex, necessitating
path planning strategies that can adapt to and recover from
sub-optimal actions. A wide range of methods have been
explored to solve different aspects of this problem, including
Coherent Point Drift for DLO state estimation [14], learning
from demonstrations for DLO manipulation [15–19], and
self-supervised learning for understanding the state-space
of DLOs [20]. In this work, we present 4 baselines that
encompass a variety of methods seen in these prior works.
The analytical algorithms use a computer vision algorithm to
detect the channel and gasket, and primitives to help the robot
recover from sub-optimal actions taken in prior steps. The
learned baseline learns from human demonstrations using
diffusion policy [4].

B. Cable Routing Tasks with DLOs

A common task category for 1D deformable manipulation
is routing, in which a DLO is manipulated to match a given
set of position and shape constraints.

Recent research has explored a range of techniques and
approaches for “cable routing,” a process in which a cable
is guided along a path by a series of unconnected fixtures
[21–25]. Some studies have focused specifically on the path
planning aspect of routing, aiming to navigate the cable
from its starting position to a designated endpoint [13].
Another rendition of this task involves guiding a string or
rope through openings that are only slightly larger than the
material itself, with a minimal clearance of 1.4mm [26].
In contrast with these scenarios that involve threading a
rope through a series of openings or guiding cables along
a path, this paper focuses on the precise challenge of snugly
fitting a gasket into a specifically shaped channel. This task
demands a greater level of accuracy in both perception and
manipulation, highlighting the need for advanced techniques
capable of handling the intricacies of secure gasket insertion.

C. Insertion Tasks

Robot manipulation has been applied to a number of
insertion tasks involving both rigid and non-rigid objects.
The most classic example is the peg-hole insertion task. In-
sertion tasks have been widely explored using learning from
demonstrations [27–29], reinforcement learning [30–33], re-
gression[34] and multimodal perception [35], where the peg
and insertion hole are rigid. Another work on insertion [36]
uses visual and tactile sensors and force-torque sensing
together with self-supervised learning to achieve policies that
allow a robot to insert a USB connector in an industrial
task setting. [37] uses reinforcement learning techniques to
learn how to insert a rigid peg into a deformable hole. Peg-
hole insertion has recently been applied to medical settings
in [38], which studies techniques to insert a flexible needle
into a deformable foam. These iterations of the peg-hole
insertion task differ from gasket assembly which requires
the gasket to deform into the rigid channel.

Pirozzi and Natale [39] focuses on wire insertion, where
a robot gripper informed by signals from its tactile sensor
inserts a wire into a hole as part of a switchgear assembly.

D. Robot Policy Learning for Long-Horizon Tasks

In long-horizon sequential manipulation tasks, earlier ac-
tions affect the feasibility of subsequent actions [40, 41].
Recent approaches include the use of imitation and re-
inforcement learning [42–44], language-conditioned policy
learning [45], self-supervised learning [46] and learning
from human demonstrations[47]. Gasket Assembly is a long-
horizon task with subtasks that include picking, placing, and
insertion.

E. Deep Imitation Learning and Diffusion Policy

Deep imitation learning from human teleoperated demon-
strations is an active area of research. Diffusion Policy [4],
motivated by the powerful generative modeling capabili-
ties of diffusion models [48, 49], was recently proposed
to represent a robot’s visuomotor policy as a conditional
denoising diffusion process. It learns the gradient of the
action-distribution score function during training and iter-
atively performs a series of stochastic Langevin dynamics
steps during inference. Specifically, starting from aK sam-
pled from Gaussian noise, the Denoising Diffusion Proba-
bilistic Model (DDPM) performs K iterations of denoising
to produce intermediate vectors with decreasing levels of
noise, aK ,aK−1, ...,a0, until a desired level of noise is ob-
tained. Mathematically, to learn the conditional distribution
p(at|ot), where ot is the observation of the current step and
at is the desired action output, we use a conditional CNN
ϵθ(a

k, k|o) to get

ak−1 = α(ak − γϵθ(a
k, k,o) +N (0, σ2I)),

where α, γ, σ are noise schedule hyperparameters and func-
tions of the iteration step k. During training, we minimize

L = MSE(ϵk, ϵθ(a
k, k,o)),

where ϵk is a random noise with appropriate variance.



III. THE GASKET ASSEMBLY PROBLEM

We propose a problem where an automated system must
reliably insert a deformable gasket into a rigid channel of
predefined shape and length. Both the channel and the gasket
are continuous. In this paper, we consider gaskets with
circular cross-section. We propose two human evaluation
metrics: (1) Alignment: How well does the gasket align with
the target shape of the channel and (2) Insertion: How much
of the gasket is contained within the channel.

As shown in Figure 2, given an RGB image of the
workspace, a gasket of fixed length lg and circular cross
sectional diameter d, and a channel of width w, length lc,
and depth h which is equal to at least d, we attempt to insert
the gasket into the channel such that the gasket is completely
contained within the channel. We assume that lg ≈ lc and
w ≤ d ≤ w+δ, where δ is a deformation constant determined
by the cross-sectional compressability of the gasket.

We denote the endpoints of the gasket as g0 and g1, and
select two points in the channel, which we denote as c0 and
c1. When the channel is open-ended (see Section V-B and
Figure 2 A,B) g0 and g1 correspond to the two endpoints of
the channel; however, when the channel is closed (Figure 2
C), g0 and g1 correspond instead to adjacent points in the
channel such that the inserted gasket, taking the longer path
between the two points, creates a closed loop.

We assume a planar work surface of known dimension,
a six-axis robot arm with a parallel jaw gripper, and 3
RGB cameras with known intrinsic and extrinsic calibration
matrices affixed at 1) the wrist of the robot, 2) above, and
3) to the side of the workspace. For the learned policy
in addition to the 3 RGB cameras, we assume a human
teleoperation input system such as a VR (Meta Quest2)
controller or a 3D Mouse (SpaceMouse) or GELLO [50].
We additionally constrain the problem space by assuming
access to a priori knowledge of the shape and dimension of
given channels, a non-adversarial (no sharp corners, knots,
or crossings) gasket starting configuration located within the
reachable workspace of the robot and the camera’s field of
view, and that the gasket and the channel can be easily color
segmented from the workspace.

IV. FOUR BASELINE METHODS

A. Learning Diffusion Policy

Deep imitation learning where an agent learns required
skills using deep neural networks trained on human demon-
strations are being considered for a range of manipulation
tasks including grasping, pressing, and pick and place [51].
Various approaches have been used for deep imitation learn-
ing including Behavior Cloning, Generative Adversarial Im-
itation Learning (GAIL), Adversarial Reward-moment Imi-
tation Learning (AdRIL) and recently, diffusion policies[4,
52, 53], used in this paper.

The learned policy uses two ZED 2 stereo depth cameras
and a Logitech BRIO webcam. One ZED 2 is mounted above
the workspace and the other ZED 2 is mounted to the left of
the workspace, with the UR5 and workspace fully in view.

Fig. 2: Channels and Gaskets in Goal Positions. Each channel has a
gasket fully inserted. The straight channel (A) and the curved channel (B)
are both open-ended channels whereas the trapezoid channel (C) is closed.
This means that for all channels, the gasket endpoints (g0, g1) and channel
endpoints (c0, c1) lie nearly on top of each other, but in the trapezoid case,
c0 and c1 also lie nearly on top of each other.

The Logitech webcam is mounted on the wrist of the UR5.
A human operator teleoperates the robot using a 3D mouse.
We use the Gello codebase [50] for teleoperation.

A team of co-authors patiently perform the task 250 times
using teleoperation and record all images and joint angles
for training. This required approximately 15 hours of human
effort. Human demonstrations are collected as described on
the website. The strategy used for the human demonstrations
is closest to the Binary+ algorithm described in IV-B.3.
As shown in Section VI, Binary+ is the best-performing
of the three algorithms. We did this so we could properly
compare the learned policy with the algorithms. Additionally,
we focus on just the straight channel which is the simplest
channel and collect all 250 demonstrations for that channel.

We use a CNN-based model architecture for Diffusion
Policy with an action prediction horizon of 16 and obser-
vation history length of 2. ϵθ(.) takes in the noisy action
akt,t+1,...,t+15 and uses 36 1D convolutional layers with FiLM
conditioning [54] on the observation embeddings [4]. For
training, we set K = 100 and use an initial learning rate of
0.0001 with a decay factor of 0.1 and we measure validation
loss using Mean Squared Error(MSE). During execution,
we use receding-horizon control with horizon 8. We use a
Denoising Diffusion Implicit Model (DDIM) [55] with 10
inference steps. These hyperparameter choices are from the
default values as provided in [56]. The result is a policy that
takes as input the camera images and generates as output
control actions and gripper position.

B. 3 Procedural Algorithms

1) Perception: The perception system aims to detect,
separate, and localize the channel and gasket given an
RGB image from an overhead workspace camera. Since the
channel shape is fixed, we use a template matching algorithm
for channel localization and identification. To enable this, we
generate a ground truth binary mask and aspect ratio for each
channel by using the CAD source files for each part. These
ground truth masks are passed to the perception pipeline and
used in the classification and planning steps. We detail the
approach:



Fig. 3: Methods. The Gasket/Channel Detection box shows gasket segmen-
tation (above) and channel segmentation (below). The Template Matching
box shows the three templates for the curved, straight and trapezoid channel.
The Straight/Curved Actuation box shows selection and actuation strategies
for the straight and curved channels: (a) is Unidirectional insertion, (b)
is Binary search insertion, and (c) is Binary+ insertion. The colors on
the channels represent the locations the robot attempts to place and press
the gasket into while the numbers represent the order they are placed and
pressed. Endpoints are green, midpoints are pink, half-points are blue and
the quartile-points are cyan. The arrows indicate the direction(s) of the
slide(s). For the trapezoid channel, we treat each segment of the trapezoid
as an instance of the straight channel. In the unidirectional approach (d)
we process each segment in a counterclockwise manner, starting at the blue
segment. For hybrid and binary (e), we evaluate the blue segment, then the
cyan segments, and finally the red segment. The learned policy proceeds
directly from the initial state to actuation (f). The Final State box shows the
final assembled gasket.

(i) Segmentation and Classification: Given an RGB im-
age of the scene, we apply a Gaussian smoothing
operator with a 5 × 5 kernel to reduce high-frequency
sensor noise. Then, we threshold the image to have
pixel values within [100, 255] to minimize the impact of
the background color and apply a Canny edge detector.
With the mask of edges in the scene, we use the
Ramer–Douglas–Peucker algorithm to get contours for
both the gasket and the mold containing the channel.
Given these contours, we extract the smallest rectangle
that encloses the input 2D point set, which can be
treated as a detection bounding box defined by the box’s
center, dimensions, and rotation angle with respect to
the x-axis. We find the aspect ratio of each detected
bounding box and compare it to those of the given
templates to classify the channel.

(ii) Localization via Alignment: Given the detection
bounding box information and inferred channel, the
template is rescaled to match the dimensions of the
observed bounding box, translated to align its center
to that of the bounding box, and rotated to match the
bounding box’s rotation with respect to the x-axis. Once
the template mask and channel are aligned, we can
precisely localize the points in pixel space where the
insertion channel exists in the physical channel.

(iii) Skeletonization: We skeletonize the localized channel
to obtain a one-pixel-wide skeleton along the center of
the channel. We then perform depth-first-search starting
from an arbitrary pixel along this skeleton to get the
pixels corresponding to the endpoints of the channel
and order all points in the channel relative to these

endpoints. This ordered list is necessary to relate pixels
to their positions on the channel.

(iv) Waypoint Selection: Using the ordered gasket skeleton,
we sample a set of points between the two endpoints
according to one of the insertion strategies (enumerated
in section IV-B.3). These points are used for the pick-
place-press actions.

This perception pipeline runs after every step to provide
an up-to-date estimate of the workspace state.

2) Robot Primitives: We define a small set of versatile
primitives to enable efficient environment interaction.

(i) Pick and Place: The robot moves just above a point with
grippers open, then descends to the height of the work
surface and closes the grippers. The robot then rises,
moves to a target point and opens the grippers.

(ii) Shift and Place: In this variant of pick and pace, the
robot slides along the surface until it reaches the target
point to avoid lifting any adjacent gasket insertions.

(iii) Press: The robot moves downward from above a target
pose until it experiences an upward force above a given
threshold (in our case, 40 N as measured by the robot’s
torque sensors).

(iv) Slide: The robot moves sideways toward a target point
across the work surface, while also pressing downward
with a small amount of force (20 N).

(v) Home: The robot returns to a position above the
workspace to afford an unobstructed view of the surface.

3) 3 Insertion Algorithms: Unidirectional insertion, bi-
nary search insertion, and Binary+. These methods differ
in the points selected for alignment, as well as the order in
which the robot actuates to those points. (See Figure 3)

(i) Unidirectional insertion (Fig. 3a): The robot picks,
places, and inserts the gasket into the channel, starting at
one end of the gasket and progressing toward the other
end. Then, the robot presses each selected point of the
gasket into the channel for a second time to reinforce
the insertion. Finally, the robot slides its gripper along
the entire length of the channel to seal the gasket.

(ii) Binary search insertion (Fig. 3b): The robot begins by
picking and placing the midpoint of the gasket, followed
by the points located at 1

4 and 3
4 of the gasket length,

followed by those at the eighths, and so on until the
algorithm reaches a termination limit (we set 1

8 for the
straight and curved channels, and 1

4 for the trapezoid
channel). Then, the robot presses each selected point of
the gasket into the channel in the same order as they
were picked and placed to reinforce the insertion. Lastly,
the robot performs a “binary slide” by starting at the
midpoint and sliding once toward each end.

(iii) Binary+ insertion (Fig. 3c): This method attempts to
combine the advantages of the unidirectional and binary
search approaches. The robot begins by picking, plac-
ing, and inserting the midpoint of the gasket, followed
by the endpoints. The robot then places the quarter and
eighth points, as in the binary method. Then, the second
reinforcing presses follow the unidirectional method.



Finally, the binary slide is performed.

V. PHYSICAL EXPERIMENTS

A. Workspace Setup

We utilize a Universal Robots UR5 to conduct experi-
ments. The UR5 is a 6-degree of freedom manipulator which
can be operated in either position- or force-control modes
to enable pressing and sliding motions. The work surface
is aligned with the XY-plane and covered with a green
tablecloth to make it perceptually uniform. The workspace
is surrounded by a series of black drapes to control lighting
and eliminate distractors. We found that the drapes were
invaluable to the template matching. Additionally, we mount
a front camera level with the workspace on the far side of the
table from the robot. This camera is only used for evaluating
insertion. A red backdrop is also used to increase contrast
between the gasket and channel when viewed from the front
camera for evaluation, and is not present during execution.

The workspace is observed by three cameras during train-
ing and execution. The overhead camera is placed 97.1 cm
above the center of the workspace and pointed downward so
that it is able to observe the entire workspace. This is the only
camera used during the execution of the procedural trials.
The “side” camera is placed 40.3 cm outside the workspace
on the left side and 32.7 cm above it, positioned such that
the camera is able to see the entire workspace along with
the robot. The “wrist” camera is mounted 16.0 cm above
the end-effector on a fixed “handle” such that it observes
the movement of the gripper along with the section of the
workspace near the robot end-effector.

B. Channels and Gasket

We consider 3 channels in increasing order of difficulty, as
shown in Fig. 2. Fig. 2A: The first channel is an open straight
channel with dimensions 26.5” x 2.68” x 0.56”. Fig. 2B: The
second channel is an open curved strut channel covering a
90◦ arc of a circle, with inner diameter 32.4”, outer diameter
35.1”, and height 0.75”. This results in a channel with an
arc length of 26.5”, a width of 2.68”, and a height of 0.75”,
which is analogous to the dimensions of the straight channel.
Fig. 2C: The third channel is a closed trapezoidal channel
with a long side of 10”, a short side of 7.5”, and two 4.5”-
long non-parallel sides. All channels have an inner channel
width of 0.5”. All channels are 3D printed from Black PLA
using a Bambu Lab P1S FDM 3D printer. We use a white
0.5” braided nylon rope as our gasket analogue as it is
deformable enough to meet the gasket-channel constraints
as discussed in Section III. The rope is cut to a length of
26.5” to precisely match the length of the testbed channels.
Figure 2 shows the channels and gasket in the goal condition.

C. 100 Gasket Assembly Trials

We only trained the demonstrations on the straight channel
in a fixed position with various gasket initializations both
above and below the channel. Thus, during testing, we only
had the channel in the same fixed position. For Trials 1-10,
i.e., for the learned policy, the channel is at a fixed pose

of 0◦. For Trials 11-100, the position and orientation of the
channel are randomized at the beginning of each trial to any
location completely within the reachable workspace and any
angle within θ = ±45◦ of the horizontal, respectively.

At the beginning of all 100 trials, the starting position of
the gasket is randomized. We perform this randomization by
lifting the gasket with one fist and dropping it over either the
top or bottom half of the workspace. The ends of the gasket
are then moved outwards until the configuration of the gasket
conforms to all of the constraints specified in Section III. A
trial ends after the robot successfully completes the task, the
program terminates, or ten minutes has elapsed, whichever
comes first. For the unidirectional insertion, in the physical
experiments, we always pick the left endpoint as a starting
point but the algorithm can start from either endpoint.

Lightproof curtains on all sides of the robot are kept
closed during experiments, with the exception of the curtains
directly in front of the robot, which are kept open so as not
to obstruct the view of the “front” workspace camera and
to facilitate the placement of a workspace key light. During
data collection for the learned policy, we additionally open
a small section of drapes behind the “side” camera, from
which the human demonstrator can view the workspace for
teleoperation. We maintain this during evaluation to ensure
that the environment for running trials was as similar as pos-
sible to the environment in which the human demonstrations
were collected for best test time results.

D. Experimental Evaluation Metrics

Since automated evaluation methods were prone to error,
we developed two manually-evaluated performance metrics.

After the robot execution has terminated, a human judge
visually rates performance into one of four alignments cate-
gories and one of four insertion categories.

We note that given the specifications of Gasket Assembly
there is a relationship between alignment and insertion. In
order for the gasket to be properly inserted, it must first
have been well aligned. The quality of alignment affects the
resultant quality of insertion.

VI. RESULTS

A. Alignment and Insertion

We perform 100 physical trials: 10 for the learned dif-
fusion policy on the straight channel in fixed 0◦ pose and
90 across all procedural approaches and all channel types
with varying channel pose positions and orientations as noted
in Section V-C. See results in Table I. We again note that
the learned policy was only evaluated for a fixed channel
pose which matched the pose used during data collection
whereas for the procedural algorithms, the channel pose
varied significantly.

For the straight channel, the binary search and Binary+
approaches achieve 75-100% in all trials. For the curved
channel, the Binary+ approach separates itself from the
binary search approach, attaining the highest alignment and
insertion performance. Finally, for the most difficult channel,



Trial No. Channel Method Alignment Performance Insertion Performance
0-25% 25-50% 50-75% 75-100% 0-25% 25-50% 50-75% 75-100%

1-10 Straight Diffusion Policy 2 0 0 8 2 0 1 7
11-20 Straight Unidirectional 6 0 1 3 6 1 1 2
21-30 Straight Binary Search 0 0 0 10 0 0 0 10
31-40 Straight Binary+ 0 0 0 10 0 0 0 10
41-50 Curved Unidirectional 5 1 0 4 7 0 1 2
51-60 Curved Binary Search 0 0 4 6 1 3 6 0
61-70 Curved Binary+ 0 0 1 9 0 0 1 9
71-80 Trapezoid Unidirectional 10 0 0 0 10 0 0 0
81-90 Trapezoid Binary Search 9 1 0 0 9 1 0 0

91-100 Trapezoid Binary+ 9 0 1 0 9 1 0 0

TABLE I: Alignment and Insertion Performance of 100 Physical Trials.

the trapezoid, the Binary+ approach attains the best align-
ment performance, while having the same outcomes as the
binary search for the insertion performance.

For the diffusion policy (Trials 1-10), there were three
failed trials across the two metrics. These failures occurred
because the diffusion policy failed to fully insert the gasket
within the 10-minute threshold. In all three instances, the
failure stemmed from incorrect execution of the pick-place-
press sequence. Specifically, the robot either did not pick
up the gasket, picked it but failed to place it correctly in
the channel, or pressed in the wrong position, disrupting
the subsequent pick-place-press sequences. Additionally, the
robot could not recover from these failures, often spending
several minutes attempting to improve the press without
success or failing to detect the error.

Similarly, for the procedural methods on the straight and
curved channels (Trials 11-70), the failures stemmed from
failing to press the gasket into the channel at some points
along the channel, leaving raised portions. When executing
slide primitive in these scenarios, the raised portions caught
on the gripper, causing large portions of the gasket to
be unseated from the channel. For the trapezoid channel
(Trials 71-100), both the binary search and Binary+ methods
were initially able to insert the gasket into the long side.
However, when the robot would try to round the corners
to go to the other sides of the trapezoid, it inadvertently
unseated the already inserted parts of the gasket. These errors
compounded across all four sides of the trapezoid channel.

B. Completion Time Analysis

We observe a difference in the time required to com-
plete the task when comparing the learned and procedural
methods. The learned diffusion policy ran until the task was
completed or it was terminated when the maximum time
horizon of 10 minutes was reached. Across all 10 trials,
the average completion time is approximately 5 minutes 34
seconds. This includes the three trials that terminated at the
maximum time horizon (10 minutes) without task comple-
tion; excluding these trials reduces the average completion
time to 3 minutes 40 seconds. The procedural algorithms ran
for approximately 3 minutes 30 seconds for the straight and
curved channels and 7 minutes for the trapezoid.

C. Discussion

For the learned diffusion policy, four humans provided 250
demonstrations.

With the unidirectional algorithm, we observe that after
the first pick and place of an endpoint, most of the gasket
still remains on the table. Consequently, the first press into
the channel often fails to seat the gasket properly. This
misalignment makes the next part of the gasket difficult
to pick since it is positioned right alongside the channel.
Moreover, even if the robot does grab the next point, since the
previous pick-place-press does not properly seat the gasket,
moving the next point along the gasket for pick and place can
cause that previous segment to be completely unaligned from
the channel. Since the unidirectional policy never revisits this
prior point for pick and place, the push will very likely fail as
well. Alternatively, with binary search, since the robot picks
the gasket first at the middle, a larger amount of the gasket
is now on the channel—approximately double compared
to the unidirectional policy’s initial pick. This increases
the likelihood that the midpoint will be properly inserted
when pressed. This proper seating at the midpoint is crucial
for successful assembly, particularly in straight and curved
channels. Compared to binary search, the Binary+ policy has
more pick-place-pushes at points close to but not exactly at
points that the binary search already reaches. This corrects
any errors that the binary search might leave. Additionally,
the Binary+ policy intentionally carries out pick-place-press
at the endpoints, which ensures that when the robot executes
the final slide, the grippers do not get caught at an unseated
endpoint and drag the entire gasket out of the channel.

VII. LIMITATIONS + FUTURE WORK

In this paper, we present a new Gasket Assembly problem
and provide results from 4 methods, a learned diffusion
policy and 3 procedural algorithms. In the future, we will per-
form more experiments varying channel pose for the diffu-
sion policy and learning diffusion policies for the curved and
trapezoidal channels. We also plan to better handle recovery
from poorly executed primitives by exploring additional
approaches including hierarchical imitation learning [25] and
self-supervised learning. We will also explore more complex
channel shapes and sizes, work on a perception system
that is more robust against different lighting conditions and
distractors and examine if various gripper types have any
significant effect on the task of Gasket Assembly.
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VIII. APPENDIX

A. Human Demonstrations

Human demonstrations are collected as follows:
1) The channel is fixed in place horizontally across the

workspace, separating the workspace into a lower and
upper section.

2) The gasket is randomly dropped in either the lower or
upper section so that it does not overlap itself and does
not touch the channel.

3) The midpoint of the gasket is grasped and placed on
top of the midpoint of the channel. The gripper then
presses the gasket down into the channel.

4) One endpoint of the channel is chosen arbitrarily. The
gasket is placed on top of the selected endpoint of the
channel and pressed down into the channel.

5) The remaining endpoint of the gasket is then placed on
top of the other endpoint of the channel and pressed to
insert it into the channel.

6) The gripper is moved to the quartile points (the order
of the quartile points the gripper goes to is chosen
arbitrarily) and pressed down on the gasket such that
at those points the gasket is inserted into the channel.

7) The gripper goes to the ’eighth’ points (again the order
of the points the gripper goes to is chosen arbitrarily)
and presses down on the gasket such that at those points
the gasket is inserted into the channel.

8) The gripper goes to the midpoint of the gasket, moves
down slowly to the channel surface such that the gripper
touches the channel surface, and moves horizontally
with no vertical movement towards one of the endpoints
of the channel (chosen arbitrarily). The gripper returns
to the midpoint of the channel and repeats this motion
towards the other endpoint of the channel. This 8-step
procedure is repeated for each human demonstration.

B. Experimental Evaluation Metrics Breakdown

After the robot execution has terminated, a human judge
visually rates performance into one of four alignments cate-
gories, as follows:

1) 0% - 25%: A major alignment failure, in which the
robot has successfully aligned less than 25% of the
gasket with the channel.

2) 25% - 50%: A partial alignment failure, in which
between 25% and 50% of the gasket has been suc-
cessfully aligned.

3) 50% - 75%: A partial alignment success, in which
between 50% and 75% of the gasket has been properly
aligned.

4) 75% - 100%: A full alignment success, in which the
robot has properly aligned at least 75% of the gasket
length with the channel.

Similarly, a human judge visually rates performance into
one of four insertion categories, as follows::

1) 0% - 25%: A major insertion failure, in which less
than 25% of the gasket is inserted into the channel.

Fig. 4: Evaluation Metric Examples. We provide examples for all four
categories of the alignment and insertion evaluation metrics discussed in
Section V-D. We show the final gasket and channel states after the robot
attempts gasket assembly. For alignment we only consider the view from the
overhead camera to determine alignment between the gasket and channel.
To determine the snug fit of the insertion, we consult both the overhead
view (top row) and the front view (bottom row), because (f), for example,
shows how a gasket that is aligned with the channel can have poor insertion.

2) 25% - 50%: A partial insertion failure, in which
between 25% and 50% of the gasket is inserted.

3) 50% - 75%: A partial insertion success, in which
between 50% and 75% of the gasket is inserted.

4) 75% - 100%: A full insertion success, in which at
least 75% of the gasket length is inserted.

Figure 4 shows qualitative results from the trials of the
three analytical algorithms in increasing order of success.
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