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Abstract— Remote telesurgery can enable expert surgeons to
operate on patients in distant or underserved locales. However,
network instability and delays hamper long-distance commu-
nication. To address this, we explore how a “digital twin,” a
3D simulator that actively mirrors a real environment, can
be applied to telesurgery. We focus on the Fundamentals of
Laparoscopic Surgery peg transfer surgical training task. We
present a framework that enables a teleoperator to perform this
task over unstable or low-bandwidth communication channels
using a digital twin. The surgeon remotely teleoperates the robot
in our simulator, which abstracts their motions into commands
and transmits them to the real robot for semi-autonomous
execution. The system executes the transfer and then sends the
real state of the pegboard back to the simulator. We present
experiments that demonstrate that the operation of each portion
of the framework in isolation maintains a high task success rate,
and that the success rate of the digital twin framework is robust
to network transmission instability and delays.

I. INTRODUCTION

Robotic Surgical Assistants (RSAs), which allow an expert
surgeon to teleoperate robot tools, are commonly used in
operating rooms worldwide to perform a variety of complex
procedures. These systems allow human surgeons to execute
precise and intricate tasks with greater dexterity and visual
acuity, enhancing the capabilities of our human operators.
In doing so, RSAs enable more precise or less invasive
surgical operations, which can reduce the risk of surgical
complication and hospital readmission. Teleoperating these
surgical robots over long distances in order to remotely
perform procedures on patients, a practice often referred
to as telesurgery, is a well-studied area of research and
enables surgeons to care for patients who are in distant or
inaccessible locations. This practice relies on sending data
across a network and can require wireless transmission in
remote or hostile environments, where the network quality of
service (QoS) can experience a variety of breakdowns. These
failures—such as packet losses and delays—can quickly
result in catastrophic errors or surgeon fatigue during op-
erations [1], [2].

One alternative to direct control is the use of a digital twin,
which provides a real-time virtual simulation of the physical
system. This digital representation models the system and

* equal contribution
1 The AUTOLab at UC Berkeley (automation@berkeley.edu)
2 SRI International
3 UC San Francisco East Bay

Fig. 1: Digital twin framework. On left: Simulated SRI Taurus
Robotic Surgical Assistant (RSA) and pegboard. On right: Real
dVRK RSA with 3D-printed pegboard.

workspace remotely, and is updated based on both a simu-
lated dynamics model and real sensor observations [3], [4],
[5], [6]. This can allow for significantly less data interchange
over the network, reducing the number of possible points of
failure. Additionally, as there are several different RSAs in
use, a digital twin system allows the remote user to interact
with a simulated RSA that is more familiar to them before
translating and mapping these commands onto the physical
RSA.

We present a framework that uses a remote digital twin
to perform the Fundamentals of Laparoscopic Surgery (FLS)
peg transfer task [7]. This task involves transferring a set of
six blocks from one set of pegs to another. Under our Digital
Twin framework, the surgeon transfers blocks in a simulated
VR teleoperation environment. Upon successful completion
of a transfer, the system sends minimal information about
the transfer via UDP or TCP to a client listener, which
decodes the packets and sends the information to the robot
to trigger a corresponding block transfer motion. The robot
then autonomously executes the desired transfer, locally
compensating for the cabling effects of the robot using a
learned neural network dynamics model as in Hwang et al.
[8]. The robot then sends the real world state of the pegboard
back to the simulated environment.

Prior work uses a simulator for the peg transfer task.
Gonzalez et al. [6] present a method that uses a simulator
of the peg transfer task overlaid with images of the real
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world to encode and send surgeon commands over a delayed
channel to an ABB YuMi robot to execute. The robot and
camera then send back information regarding the state of
the real world, which is used to update simulator state. We
extend this work by considering delayed teleoperation of the
peg transfer task with a cable-driven surgical robot, which
introduces potential errors due to the effects of hysteresis
and backlash [8], [9], [10], [11]. These additional errors can
significantly increase the difficulty of the peg transfer task, as
the precision required is under 1 millimeter [9]. Additionally,
we consider a framework using two different RSAs: the SRI
Taurus robot [12] in simulation and the da Vinci Research Kit
(dVRK) [13] in the physical setup operating over channels
that have substantial, widely-varying time delays and trans-
mission errors due to wireless communication over ad-hoc
networks.

This paper contributes:
1) A digital twin environment for simulating the FLS peg

transfer task and transmitting commands using the SRI
Taurus RSA.

2) A digital twin framework to semi-autonomously per-
form this task on the Taurus and the da Vinci Research
Kit (dVRK) RSA under varying network conditions.

3) Experimental results suggesting that the framework is
robust to network delays and packet loss.

II. RELATED WORK

A. Telesurgery and Latency

Remote teleoperation for surgery has a wide range of
potential benefits [2], but it also faces significant challenges
associated with network latency and instability [14]. Lum
et al. [15] studied the effect of latency in the 150 ms-
1000 ms range on the task of peg transfer, and found that
the operator of a Raven surgical robot suffered considerable
mental fatigue and a drastically lower success rate as latency
increased. Even in tasks far less complex than surgery,
moving from a low-latency to a high-latency regime reduced
human performance and increased the severity of fatigue and
stress responses [16], [17].

Meehan et al. [16] found that a change as subtle as moving
from 50 ms to 90 ms latency resulted in a greater stress
response and a decreased sense of presence. MacKenzie
et al. [17] tested the effect of increasing computer mouse
latency and observed 63% slower user task completion and
an increasing error rate when going from a low-latency to a
high-latency regime.

However, despite these negative effects, humans can still
successfully perform tasks under moderate latency conditions
in the range of 100–200 ms. Marescaux et al. [18] performed
a 54 minute operation from 14,000 km away with a mean
latency of 155 ms; surgeons described the operation as safe
and reliable.

These findings motivate the development of alternate con-
trol schemes for telesurgery which provide a more responsive
interface for human subjects. One such route is to incorpo-
rate stabilizing controllers and prediction, which allows the

simulator to compensate directly for latency by predicting
a few moments into the future. Ryu et al. [19] propose
the Time Domain Passivity Approach (TDPA) to extend
time-domain passive control to teleoperation and guarantee
stable operation without exact state information. Panzirsch
et al. [20] extend TDPA to teleoperation at Earth-to-Moon
timescales, with up to 3 s round-trip delays. Grohmann et
al. [21] also propose JAVRIS, an approach that uses deep
learning predictions of robot state to give a zero-latency
user experience. In contrast to these prior approaches, our
proposed digital twin method gives the teleoperator a familiar
interface to drive an autonomous process that can handle long
delays (minutes) and communication disruptions by fully
simulating the system.

B. Digital Twins for Telesurgery

Laaki et al. [4] created a digital twin system for controlling
a UR3 arm in a surgical environment by streaming the robot’s
end effector pose over UDP, demonstrating that the real arm
can match the end effector pose of the virtual arm with
negligible delay except in certain cases. Hagmann et al. [22]
used a digital twin for manipulating nylon as a pick-and-
place task using Shared Control Templates to represent robot
skills. Their results show that assistance by haptic feedback
from the digital twin improved accuracy and ease of task
completion compared to the case without feedback. Contrary
to prior digital twins, our proposed method enables surgical
peg transfer completion on a cable driven surgical robot
in the presence of significant network delays. Furthermore,
we allow our operator to work with the latest state of the
pegboard without requiring high-bandwidth transmission.

C. Surgical Peg Transfer

The surgical peg transfer is one of five tasks in the
Fundamentals of Laparoscopic Surgery surgeon training
tasks [7]. The peg transfer task is commonly studied in
surgical robotics literature, because it requires a high level
of accuracy [6], [8], [9], [10], [23], [24], [25], [26]. The peg
transfer task is challenging for surgical robots, as accurate
open-loop control of these robots is difficult due to cable
stretching effects such as hysteresis and backlash [8], [9],
[10], [11], [27]. Peg transfer requires high precision, because
the opening in each block only clears the peg by 1.15 mm
on average [9].

Rosen et al. [25] first studied automation of the peg
transfer task using a Raven surgical robot and a version of the
task with three blocks. Hwang et al. [8] propose a calibration
method that compensates for the cable-stretching proper-
ties of individual surgical instruments. With the calibration
method, Hwang et al. [8] demonstrate a fully-autonomous
success rate of over 96% on the peg transfer task. Paradis et
al. [9] propose a different method, which uses closed-loop
visual servoing to autonomously perform the peg transfer
task with over 99% success rate. In this paper, we use the
calibration method from Hwang et al. [8] to execute block
transfers commanded by the remote surgeon.



The peg transfer task is also commonly used to study
human-robot interfaces during teleoperation. Abiri et al. [28]
use the peg transfer task to evaluate a novel method for haptic
force feedback during surgeon teleoperation. Rivas-Blanco et
al. [23] study how to automate surgeon camera movement
while performing peg transfer. Conversely, Brown et al. [24]
use contact forces and arm accelerations to autonomously
rate the surgeon performance in the peg transfer task. The
surgical peg transfer task is also used to study task segmen-
tation algorithms that split and cluster human trajectories of
the task into semantically-relevant subtasks [29], [30].

III. PROBLEM STATEMENT

We describe the assumptions, experimental setup, and peg
transfer task in this section.

A. Assumptions

We consider a version of the FLS peg transfer task that
involves transferring six red, 3D-printed blocks from the pegs
on the left side of the board (Figure 1) to the right side of
the board. Each starting peg ps on the left side of the board
has index ps ∈ {0, 1, 2, 3, 4, 5}. Each target peg pt on the
right side of the board has index pt ∈ {6, 7, 8, 9, 10, 11}
(Figure 2).

1) Simulator Assumptions and Setup: Our digital twin
framework utilizes a human-operable simulation of the SRI
Taurus RSA robot performing the FLS peg transfer task.
This simulator generally reflects the dynamics of the physical
system, modeling the robot kinematics as well as the states
of the blocks and pegboard. In certain rare cases, however,
the physics of the simulator differ markedly from the real
RSA. Occasionally, collision calculation errors allow two
blocks to overlap on the same peg, or cause the pegboard
to fly off the screen after contact with the robot arm.
Similarly, friction mismatches sometimes cause the blocks
to stick to or drop from the end effector despite no surgeon
error. Nevertheless, these issues are infrequent and present
minimal obstruction to our use. We assume that the real
robot and simulator are controlled by different computers
connected via an IP network. The simulator used in this
work is based on the SRI Taurus robot [12], which has two
7 DOF arms and an actuated overhead camera with a single
DOF. The environment (Figure 2) is designed in Unreal
Engine and displayed using an Oculus Rift VR headset.
The simulator presents the remote surgeon with a console
displaying the view from the Taurus’ overhead camera, and
conveys the performed actions to the robot-side computer
over our simulated network.

The framework determines ps and pt by analyzing the
user’s actions in the simulator; each peg has a bounding box
that detects contact at the bottom of the board. ps is reported
as the peg corresponding to the bounding box the block is
lifted out of, and pt is the peg corresponding to the bounding
box the block is placed in.

2) Real Workspace Assumptions and Setup: The robot
setup consists of a da Vinci Research Kit (dVRK) with two
7-DOF patient side manipulator (PSM) arms equipped with

Fig. 2: Sim Interface. Four views of our simulator environment.
Top left: The surgeon operates the simulator using an Oculus
Rift VR headset and two handheld Oculus Touch controllers. Top
right: The digital twin provides a full simulation of the robot and
peg transfer environment. Bottom left: The peg transfer task from
the surgeon’s viewpoint in VR. Bottom right: The digital twin
simulates the physics of the peg transfer task, providing a realistic
digital analog.

large needle driver instruments [13]. The robot is equipped
with a system to perform peg transfers autonomously given
an input starting and ending peg tuple (ps, pt) from the sim-
ulator. The physical board configuration is modeled on the
setup devised in Derossis et al. [7] to ensure comparability to
other results. As in prior work [6], [8], [9], [10] we consider
a visually-challenging setup where both the board and blocks
are red (Figure 1, right). This setup ensures the robustness of
our method under even low-contrast regimes. We also assume
access to an overhead depth camera; our setup utilizes an
inclined Zivid OnePlus S camera, which captures RGBD
images at 1920x1200 resolution, as its primary input signal.
Our method requires that all pegs are positioned within the
dexterous workspace of both the simulated and real RSAs,
and are in the field of view of both cameras; however,
our method requires no further assumptions regarding the
kinematic match between the simulated and real robots.

B. Problem Definition

We define a trial of the peg transfer task as an attempt to
move all six red blocks from the left pegs to the right pegs.
As in prior work [9], we decompose each trial into several
subtasks. A pick involves grasping a block and lifting it off
the peg. A place is when a block is dropped on a target
peg. A transfer is the act of picking a block from a peg and
placing it on a target peg. We represent a transfer using a
tuple (ps, pt) for the starting and ending pegs, as defined in
Section III-A. A transfer is considered successful if transfer
(ps, pt) is executed in simulation, and the same transfer
(ps, pt) is executed successfully on the physical robot.

A robot trial starts with all six blocks on the left side of the
board in both the simulator and real setup. In the simulator
setup, the orientation of each block is fixed, such that each
trial begins with the blocks in the same orientation, but in the



real setup, each block can be rotated around its peg by an ar-
bitrary amount. The surgeon executes a sequence of transfers
in simulation. The simulation then extracts information about
the surgeon’s actions and transmits packets to the robot. The
robot receives this information and executes the surgeon’s
commands to transfer the blocks in the real setup. Once the
real transfer is complete, the system sends the real state of the
pegboard back to the simulator. The trial ends when the sixth
transfer attempt concludes or when the simulator or robot
enter an irrecoverable state. An irrecoverable state is a state
from which subsequent transfers are dynamically infeasible
due to kinematic or system limitations of the arms, either in
simulation or real. One example of an irrecoverable state is
if a block is dropped in a location that impedes future block
placements. The transfer attempt responsible for reaching an
irrecoverable state is considered a failure.

C. Failure Modes

A trial can experience the following errors during execu-
tion:

1) Block Drop, Simulation (Block): The block is ir-
recoverably dropped out of reach in simulation.

2) Pegboard Inaccessible, Simulation (Board): The
simulation pegboard is pushed out of reach of the arms.
This is an irrecoverable state, requiring the current trial
to be scrapped.

3) Surgeon Failure, Simulation (Surg.): The surgeon
moves the block such that it enters the bounding box
of an incorrect peg, causing an incorrect message to be
sent to the robot. For instance, if the surgeon intends
to perform the transfer (4, 10) but accidentally enters
the bounding box of peg 7, the command sent to the
robot is (4, 7) instead of (4, 10); this is registered as a
surgeon failure. The robot places the block on peg 7 in
real and the surgeon eventually places the block on peg
10 in simulation. The surgeon then correctly performs
a subsequent transfer (1, 7) in simulation, but the robot
detects a block already present on peg 7 and refuses to
execute the transfer in real. This is not registered as a
failure for the second transfer, since the robot behaved
as expected given the new state of the pegboard.

4) Perception Failure, Real (Perc.): The real robot
incorrectly identifies the start peg as empty or the end
peg as occupied, and fails to execute the transfer.

5) Pick Failure, Real (Pick): The real robot attempts but
fails to pick the block.

6) Place Failure, Real (Place): The physical robot at-
tempts but fails to place the block on the target peg,
either placing on the wrong peg or failing to place on
any peg at all.

IV. DIGITAL TWIN FRAMEWORK

The digital twin framework consists of three stages for
each individual peg transfer: simulator command extrac-
tion (corresponding to Bi and Ci in Figure 3), command
transmission, physical robot execution (corresponding to

Di and Ei), real pegboard state identification (correspond-
ing to Fi), pegboard state transmission, and simulator
state update (corresponding to Gi) (Figure 3).

A. Simulator Command Extraction

The surgeon performs a peg transfer in the simulator by
teleoperating the simulated robot using the handheld Oculus
Touch controllers. The surgeon picks a block from a starting
peg and places it on a target peg.

B. Command Transmission

After the surgeon successfully executes a transfer in sim-
ulation, the simulator compiles the starting peg ps and target
peg pt associated with the transfer into a network packet,
where ps ∈ {0, 1, 2, 3, 4, 5} and pt ∈ {6, 7, 8, 9, 10, 11}.
The packet is sent to the physical robot’s computer. If
successfully transmitted, the received messages are decoded
and ps and pt are sent to the robot to execute a physical
transfer.

C. Physical Robot Execution

The robot receives a commanded peg transfer (ps, pt) via
TCP (in the case of a lossy network) or UDP (all other
cases), then decodes and autonomously executes it on the
physical peg board. The robot uses the peg transfer algorithm
from Hwang et al. [8] to perceive the block state using
depth sensing and the iterative closest point (ICP) algorithm.
The robot also uses the system identification and control
algorithm from Hwang et al. [8] to provide accurate control
by compensating for the cabling properties of the arm.

D. Real Pegboard State Identification

After the robot attempts a peg transfer, the robot takes
a picture of the pegboard and determines which pegs are
occupied by blocks. This step catches any errors made in
the physical robot execution stage. The result is a six-tuple
with one entry per block, listing the peg that each block is
on.

E. Pegboard State Transmission

The robot transmits the six-tuple representing the peg
position of each of the six blocks over the network to the
the simulator.

F. Simulator State Update

Once the simulator receives the six-tuple, it sets the
positions of each block to the corresponding peg number
from the six-tuple.

V. EXPERIMENTS

Each full trial consists of 6 block transfers, moving each
block from the left side of the pegboard to the right side.
For all experiment types (sim-only, real-only, and teleop)
we execute transfers the following order, listed here in
sim coordinates: (4, 10), (1, 7), (5, 11), (2, 8), (6, 12), (3, 9).
In all trials, one co-author (K. Srinivas) served as the human
operator, after approximately 10 hours of experience using
the VR interface.



Fig. 3: Method and data collection overview. During each transfer run, the operator begins moving the simulated robot (B1 and C1),
attempting to move all 6 blocks from one peg to another. Upon successful completion of each move in the simulator, a high-level command
is sent over the network to the robot, subject to delays and instability. The robot attempts to duplicate each move made by the operator (D1

and E1). Once the physical transfer is complete, the robot takes an image of the pegboard to determine positions of all of the real blocks
(F1). The robot then sends the positions of all six blocks back to the simulator over a network subject to delays and instability. After
receiving all six block positions, the simulator updates to match the real state (G1). We measure 3 durations for each trial: Tsim−sim:
start of simulation transfer to end of simulation transfer. This is measured from when the arm leaves the bounding box of the start peg in
sim to when it enters the bounding box of the end peg in sim. Treal−real: start of real transfer to end of real transfer. This is measured
from when the robot commands the arm to perform a transfer in real to when the arm places the block on the end peg in real. Tsim−real:
start of simulation transfer to end of real transfer. This is measured from when the arm leaves the bounding box of the start peg in sim
to when the arm places the block on the end peg in real.

A. Evaluation Metrics

We evaluate each attempted transfer individually and cat-
egorize failures as described in Section III-C. We record
whether each attempted peg transfer is successful and report
the trial’s success rate. Each trial may contain at most 6
transfers, and can have fewer if an irrecoverable state was
reached in the middle of a trial (Section III-C).

B. Simulation-Only Experiment

We benchmark the simulation quality by executing fully-
teleoperated peg transfer trials without communication with
the physical robot. For each simulation-only trial, we record
1 type of duration:

• Tsim−sim: start of sim transfer to end of sim transfer.
This is measured from when the block leaves the
bounding box of the start peg in simulation to when
it enters the bounding box of the end peg in sim.

We evaluate failures as described in Section III-C, abbrevi-
ating failure modes as Block (block drop failures) or Board
(pegboard inaccessible failures).

C. Simulation-Only Results

We perform 10 trials of the sim-only case with the
dVRK, and report results in Table I. Across all 10 trials,

we performed 55 total attempts at moving a block from the
left side of the board to the right side, each of which took
7.65 seconds on average. A “perfect” trial with no failures
involves 6 total attempts (left to right). We encountered
2 Pegboard Inaccessible failures, which prevented us from
carrying out the remaining transfers in the respective trial.
The success rate for a single transfer attempt is 52/55, or
94.54%.

Tsim−sim Success / Attempts Success Rate (%) Failure Mode
(1) (2) (3)

7.65 52/55 94.54 1 2 0

TABLE I: Simulation Results: Success rate and transfer time (in
seconds) for moving blocks from left side of the peg board to the
right side of the peg board in the simulation. We categorize failures
for the simulation into 3 modes: (1) block drop, (2) inaccessible
pegboard, and (3) surgeon failure.

D. Real Robot-Only Experiment

To benchmark the quality of the autonomous physi-
cal robot peg transfers, we run real robot-only trials au-
tonomously without the human teleoperator. We initialize a
trial in real by randomly placing six blocks on to the six
pegs on the left side of the peg board, producing variation



in the pose of each block. For each real robot-only trial, we
record 1 type of duration:

• Treal−real: start of real transfer to end of real transfer.
This is measured from when the robot commands the
arm to perform a transfer in real to when the arm places
the block on the end peg in real.

We evaluate failures as described in Section III-C, abbre-
viating failure modes as Pick (pick failures), Place (place
failures), or Perception (perception failures).

E. Real Robot-Only Results

We also provide results for a robot-only case, in which the
robot performs the aforementioned peg transfer task with no
human input. We run 20 trials of 6 transfers each, relying
entirely on the robot’s own perception. As the system does
not have to wait for the human operator in this case, the
average length of a full trial is shorter, coming to an average
of 5.859 seconds per transfer. Over these 120 transfers, the
success rate of block transfer attempts was 100% (Table
II). Across all 120 transfers, there was 1 partial perception
failure, which the robot was able to recover from, and no
pick or place failures.

Treal−real Success / Attempts Success Rate (%) Failure Modes
(4) (5) (6)

5.859 120/120 100.00 0 0 0

TABLE II: Real Robot Results: Success rate and mean transfer
time (in seconds) for moving blocks from left side of the peg board
to the right side of the peg board in real. We categorize failures for
the real robot into 3 modes: (4) perception failure, (5) pick failure,
and (6) place failure.

F. Teleoperation Experiment

We perform a transfer in simulation using an Oculus
Rift S headset with hand-held controllers and then send the
tuple of (start peg, end peg) to the robot over the network.
Upon receiving this tuple, the robot begins attempting the
commanded transfer. For each teleop trial, we record 3 types
of duration:

• Tsim−sim: start of simulation transfer to end of simu-
lation transfer. This is measured from when the block
leaves the bounding box of the start peg in sim to when
it enters the bounding box of the end peg in sim.

• Treal−real: start of real transfer to end of real transfer.
This is measured from when the robot commands the
arm to perform a transfer in real to when the arm places
the block on the end peg in real.

• Tsim−real: start of simulation transfer to end of real
transfer. This is measured from when the arm leaves
the bounding box of the start peg in sim to when the
arm places the block on the end peg in real.

Due to transmission delays, Tsim−sim and Treal−real for a
particular transfer do not necessarily add up to Tsim−real for
that transfer.

1) Teleop with Random Start State: We study the per-
formance of the digital twin framework on the peg transfer
task with a random initial state and no additional network
conditions. In this version of the task, every block is assigned
a random number between 1-12 without replacement to
indicate the peg it starts on. Furthermore, there is no defined
transfer order; the objective is to have a final state where all
of the six blocks are on the right side.

2) Teleop with Varying Delay: We study the effects of
network delays by delaying the simulation pick and place
messages received by the dVRK. Delay is implemented using
netem, which inserts a delay after every packet sent from
sim, with the amount of delay sampled from a Gaussian
distribution with specified mean and variance. We performed
5 trials each of 3 normal distributions:

• N (1 sec, 1 sec)
• N (10 sec, 1 sec)
• N (100 sec, 1 sec)
3) Teleop with Varying Packet Loss: We also study the

effects of packet loss by intermittently dropping packets
containing the pick and place messages sent by the sim.
Packet loss is also implemented using netem, which drops
each packet with a specified probability. We performed 5
trials each with 2 different probabilities: 10% and 25%.

G. Teleoperation Results

We report results in Table III for the various network cases.
For the standard network case, we perform 11 trials, and have
a success rate of 90.91% across all transfers, with a total of
6 failed transfers. 1 failure was a perception issue, where the
robot either incorrectly identified the start peg as empty or
the end peg as occupied and consequently refused to execute
the commanded transfer. 5 failures were place failures in real,
where the robot attempted to place the block on a target peg
and either placed it on the wrong peg or failed to place it on
any peg.

1) Teleop with Random Start State: For the random start
state with standard network case, we perform 10 trials, and
obtain a success rate of 86.20% across all transfers, with a
total of 4 failed transfers. 2 failures were perception failures,
and 2 were place failures in real. We report results in Table
III.

2) Teleop with Varying Delay: For the delayed network
case, the human operator performs 5 trials under each
network distribution. We report results in Table III.

The 5 trials using the distribution with mean 1 sec have a
success rate of 93.33% across all transfers, with a total of 2
failed transfers. Both were place failures in real, where the
robot attempted to place the block on a target peg and either
placed it on the wrong peg or failed to place it on any peg.

The 5 trials using the distribution with mean 10 sec have
a success rate of 88.89% across all transfers, with a total of
4 failed transfers. 3 of these failures were place failures in
real and 1 was a pick failure in real.

The 5 trials using the distribution with mean 100 sec have
a success rate of 93.10% across all transfers, with a total of



Network Condition Tsim−sim Treal−real Tsim−real Success / Success Rate Failure Mode:
(s) (s) (s) Attempts (%) (1) (2) (3) (4) (5) (6)

No delay, ploss = 0 5.29 5.90 11.19 60/66 90.91 0 0 0 1 0 5
No delay, random start, ploss = 0 7.45 5.96 13.43 25/29 86.20 0 0 0 2 0 2
N (1sec, 1sec) delay, ploss = 0 8.09 6.06 15.25 28/30 93.33 0 0 0 0 0 2
N (10sec, 1sec) delay, ploss = 0 5.33 6.04 23.17 32/36 88.89 0 0 0 0 1 3
N (100sec, 1sec) delay, ploss = 0 4.20 5.56 113.29 27/29 93.10 0 0 0 0 1 1

No delay, ploss = 0.10 4.42 5.91 10.37 28/30 93.33 0 0 0 1 0 1
No delay, ploss = 0.25 4.57 5.91 11.29 26/30 86.67 0 0 0 1 1 2

TABLE III: Teleop Results in the Presence of Varying Network Conditions: Success rate and mean transfer time (in seconds) for
transfers with varying QoS. We combine the failure cases from sim-only and real-only experiments for a total of 6 failure modes: (1)
block drop, (2) inaccessible pegboard, (3) surgeon failure, (4) perception, (5) pick, and (6) place failures.

2 failed transfers. 1 failure was a pick failure in real, and 1
failure was a place failure in real.

The Tsim−sim and Treal−real times remain fairly consis-
tent across all distributions but the Tsim−real times increase
with the mean of the distribution. This is because the delay
is introduced between sim and real, so neither the operator’s
ability to operate in sim nor the robot’s ability to operate
in real is affected by this delay. The delay only adds to the
time between the operator starting a transfer in sim and the
robot completing that transfer in real, explaining the positive
correlation between the mean of the distribution and the
recorded Tsim−real times.

3) Teleop with Varying Packet Loss: We perform 5 trials
with 10% chance of packet loss and 5 trials with 25% chance
of packet loss. We report results in Table III.

The 5 trials with 10% chance of packet loss have a success
rate of 93.33% across all transfers, with 2 failed transfers.
1 failure was a perception failure in real, and 1 was a place
failure in real. The 5 trials with 25% chance of packet loss
have a success rate of 86.67%, with 4 failed transfers. 1
failure was a perception failure in real, 1 was a pick failure
in real, and 2 were place failures in real.

Note that in both the varying delay and varying packet loss
cases, none of the failures are caused directly by the delay or
packet loss, but rather due to errors contained entirely within
the robot. 9/14 failures are robot place failures, where the
robot received the correct command but executed it incor-
rectly, and 3/14 failures are robot pick failures, where the
robot failed to pick up the instructed block. The remaining
2/14 failures are robot perception failures, so all 14 failures
are entirely contained within the robot.

For trials with added delay, the time to task completion
increases roughly by the amount of the delay. For the
trials involving 10% and 25% packet loss, the time to task
completion did not increase compared with the no-delay
trials. One notable exception to this is that the Tsim−real time
for the case with 10% chance of packet loss is lower than
the Tsim−real time for the standard network case by 0.82 s.
This comes from the fact that the Tsim−sim time for the
10% packet loss case is 0.87 s lower than the Tsim−sim time
for the standard network case, so even with the additional
time taken to re-send dropped packets, the Tsim−real time
is lower than the standard network case.

VI. DISCUSSION

Remote telesurgery has the potential to enable expert
surgeons to provide medical assistance to patients who are

in dangerous or difficult-to-reach environments. However,
delays and network instability can make long-distance com-
munication infeasible. This paper presents a novel Digital
Twin framework for performing surgical peg transfer over
delayed and lossy communication channels. The framework
addresses these instability issues by maintaining a corre-
sponding simulated environment for the human operator to
interact with, and transmitting only the operator actions in
this twin to the real RSA system for execution. The operator
performs an action in this digital twin, which is then encoded
into a high-level maneuver by the simulator and sent over
the lossy network to the robot. The robot then receives
this representation and autonomously performs the requested
action. Results show that the success rate is comparable
under varying network conditions, and that the failures we
do encounter are not due to the state of the network but
rather the performance of the real robot itself or uncorrelated
operator failure in sim; however, total completion time was
highly correlated with network delays. In future work, we
hope to investigate the performance of the method under
more extreme network conditions, and improve the feedback
mechanism between the real robot and simulator to detect
and recover from these failure cases.
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