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Abstract— Action representation is an important yet often
overlooked aspect in end-to-end robot learning with deep
networks. Choosing one action space over another (e.g. target
joint positions, or Cartesian end-effector poses) can result in
surprisingly stark performance differences between various
downstream tasks – and as a result, considerable research
has been devoted to finding the right action space for a given
application. However, in this work, we instead investigate how
our models can discover and learn for themselves which action
space to use. Leveraging recent work on implicit behavioral
cloning, which takes both observations and actions as input,
we demonstrate that it is possible to present the same action
in multiple different spaces to the same policy – allowing it to
learn inductive patterns from each space. Specifically, we study
the benefits of combining Cartesian and joint action spaces in
the context of learning manipulation skills. To this end, we
present Implicit Kinematic Policies (IKP), which incorporates
the kinematic chain as a differentiable module within the deep
network. Experiments across several continuous control tasks—
from scooping piles of small objects, to lifting boxes with elbows,
to precise block insertion with miscalibrated robots—suggest
IKP not only learns complex prehensile and non-prehensile
manipulation from pixels better than baseline alternatives, but
also can learn to compensate for small joint encoder offset
errors.

I. INTRODUCTION

Deep visuomotor policies that map from pixels to actions
end-to-end can represent complex manipulation skills [15],
but have shown to be sensitive to the choice of action space
[17] – e.g., Cartesian end effector actions (i.e. task space
[4]) perform favorably when learning policies for tabletop
manipulation, while joint actions have shown to fare better
for whole-body motion control [21], [28]. In particular,
policies modeled by deep networks are subject to spectral
biases [26], [3], [5] that make them more likely to learn and
generalize the low-frequency patterns that exist in the control
trajectories. Hence, choosing the right action space in which
to define these trajectories remains a widely recognized
problem in both reinforcement learning [21] as well as
imitation learning, where demonstrations can be provided in
a wide range of formats – e.g., continuous teleoperation in
Cartesian or joint space, kinesthetic teaching, etc. – each
changing the underlying characteristics of the training data.

Although considerable research has been devoted to find-
ing the right action space for a given application [21],
much less attention has been paid to figuring out how our
models could instead discover for themselves which optimal
combination of action spaces to use. This goal remains
particularly unclear for most explicit policies fθ(o) = â
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Fig. 1. Enabled by an implicit policy formulation, Implicit Kinematic
Policies (IKP) provide both Joint and Cartesian action representations
(linked via forward kinematics) to a model that can pick up on inductive
patterns in both spaces. Subsequently, this allows our end-to-end policies
to extract the best action space for a wide variety of manipulation tasks
ranging from tabletop block sorting to whole-arm sweeping.

with feed-forward models that take as input observations
o and output actions a ∈ A. Explicit formulations must
either specify a single action space to output from the model
and potentially convert predictions into another desired space
(e.g. with inverse kinematics), or use multiple action spaces
with multiple outputs and losses which can be subject to
conflicting gradients [33] from inconsistent predictions [17].

In this work, we demonstrate that we can train deep
policies to learn which action space to use for imitation,
made possible by implicit behavior cloning (BC) [8]. In
contrast to its explicit counterpart, implicit BC formulates
imitation as the minimization of an energy-based model
(EBM) â = arg mina∈AEθ(o, a) [14], which regresses the
optimal action via sampling or gradient descent [32], [6].
Since actions are now inputs to the model, we propose
presenting the model with the same action represented in
multiple spaces while remaining consistent between each
other, allowing the model to pick up on inductive patterns
[3], [5] from all action representations.

We study the benefits of this multi-action-space formula-
tion with Cartesian task and joint action spaces in the context
of learning manipulation skills. Since both spaces are linked
by the kinematic chain, we can integrate a differentiable
kinematic module within the deep network – a formulation



which we refer to as Implicit Kinematic Policies (IKP).
IKP can be weaved into an implicit autoregressive control
strategy introduced in [8], where each action dimension is
successively and uniformly sampled at a time and passed
as input to the model. This exposes the model to not only
the joint configuration and end-effector pose, but also the
Cartesian action representations of every rigid body link
of the arm as input. This can provide downstream benefits
when learning whole-body manipulation tasks that may have
emergent patterns in the trajectory of any given link of
the robot. Furthermore, a key aspect of Implicit Kinematic
Policies is that in addition to exposing the implicit policy
to both Cartesian and joint action spaces, it also enables in-
corporating learnable layers throughout the kinematic chain,
which can be used to optimize for residuals in either space.

Our main contribution is Implicit Kinematic Policies, a
new formulation that integrates forward kinematics as a
differentiable module within the deep network of an au-
toregressive implicit policy, exposing both joint and Carte-
sian action spaces in a kinematically consistent manner.
Behavior cloning experiments across several complex vision-
based manipulation tasks suggest that IKP, without any
modifications, is broadly capable of efficiently learning both
prehensile and non-prehensile manipulation tasks, even in the
presence of miscalibrated joint encoders – results that may
pave the way for more data efficient learning on low-cost
or cable-driven robots, where low-level joint encoder errors
(due to drift, miscalibration, or gear backlash) can propagate
to large non-linear artifacts in the Cartesian end effector
trajectories. IKP achieves 85.9%, 97.5% and 92.4% on a
sweeping, non-prehensile box lifting and precise insertion
task respectively – performance that is on par with or exceeds
that of standard implicit or explicit baselines (using the
best empirically chosen action space per individual task).
We also provide qualitative experiments on a real UR5e
robot demonstrating IKP’s ability to learn from noisy human
demonstrations in a data-efficient manner. Our experiments
in both simulated and real environments provide an initial
case study towards more general action-space-agnostic ar-
chitectures for end-to-end robot learning. Code will be made
available.

II. RELATED WORK

A. Learning Task-Specific Action Representations

While much of the early work in end-to-end robot learning
has focused on learning explicit policies that map pixels
to low-level joint torques [16], [15], more recent work has
found that the choice of action space can have a significant
impact on downstream performance for a wide range of
robotic tasks ranging from manipulation to locomotion [18],
[7], [21], [31], [30]. In the context of deep reinforcement
learning for locomotion, [21] find that using PD joint
controllers achieves higher sample efficiency and reward
compared to torque controllers on bipedal and quadrupedal
walking tasks in simulation, whereas [31] interestingly find
that torque controllers outperform PD joint controllers for a
real robot hopping task. In contrast, [7] shows that using

task space actions are more effective for learning higher
level goals of legged locomotion compared to joint space
controllers and demonstrate results on a real bipedal robot.

Careful design of the action space is equally important
when learning manipulation skills with high DoF robots [18],
[30]. Prior approaches successfully use direct torque control
or PD control with joint targets to learn a variety of tasks
such as pick-and-place, hammering, door opening [25] and
stacking [23], but these methods often require lots of data
and interaction with the environment to generalize well and
are also sensitive to feedback gains in the case of PD control.

Other works default to low-level residual cartesian PD
controllers in order to learn prehensile tasks such as block
stacking [13] and insertion [27], but [18], [30] instead
vouch for a task-space impedance controller to support more
compliant robot control. However, this approach is agnostic
to the full joint configuration of the robot and focuses on
tabletop manipulation which is generally better defined in
task space. Fundamentally, these works share the common
theme of choosing the single best action space for a particular
task. In this work, we are more concerned with the problem
of extracting the best combination of action spaces.

B. Difficulties in Learning High-Frequency Functions

The proposed benefits of implicit kinematic policies rely
on the hypothesis that simpler patterns are easier for deep
networks to learn. Although theoretical analyses of two-layer
networks and empirical studies of random training labels
have shown that deep networks are prone to memorization
[34], further studies on network convergence behavior and
realistic dataset noise have found that this result does not
necessarily explain performance in practice. Instead, deep
networks first learn patterns across samples before memoriz-
ing data points [1]. [24] formalize this finding and show that
deep networks have a learning bias towards low-frequency
functions by using tools from Fourier analysis and [2] extend
this result by showing that networks fit increasingly higher
frequency functions over the course of training. Within
learning-based robotics, multiple works have found the re-
lated result that higher-level action spaces lead to improved
learnability. Specifically, the frequency of the action space
can have an outsized effect on the robustness and quality
of learned policies [21]. This could explain why learned,
latent actions improve performance and generalizability for
policies trained either with reinforcement learning [10], [11],
[19], [22] or imitation learning [9].

III. BACKGROUND

A. Problem Formulation

We consider the imitation learning setting with access to
a fixed dataset of observation-action pairs. We frame this
problem as supervised learning of a policy π : O → A
where o ∈ O = Rm represents an observational input to
the policy and a ∈ A = Rd represents the action output.
The policy π, with parameters θ, can either be formulated as
an explicit function fθ(o) → â or as an implicit function
arg mina∈AE(o,a) → â. In this work, we adopt the



Fig. 2. Integrating forward kinematics (FK), in particular, synergizes with
implicit policies (a, b), where actions a are sampled in joint space, and both
joints and corresponding Cartesian actions along with observations o can
be fed as inputs to the EBM fθ . For explicit policies (c), it becomes less
clear how to expose both action spaces in a kinematically consistent way
to the deep network, except via predicting joints from observations, then
using forward kinematics to backpropagate gradients from losses imposed
on the final output Cartesian actions (in red). In this work, we investigate
both formulations and find that implicit (b) yields better performance.

implicit formulation and build upon recent work which we
describe in more detail in Section III-B. We operate in the
continuous control setting, where our policy infers a desired
target configuration at 10 Hz, and a low-level controller
asynchronously reaches desired configurations with a joint-
level PD controller. Our O contains both image observations
and proprioceptive robot state (i.e. from joint encoders).

B. Implicit BC

We use an energy-based, contrastive loss to train our
implicit policy, modeled with the same late-fusion deep
network architecture as in [8] with 26 convolutional ResNet
layers [12] for the image encoder and 20 dense ResNet layers
for the EBM. Specifically, to optimize Eθ(·), we train an
InfoNCE style loss [29] on observation-action samples [8].
Our dataset consists of {oi,a∗i } for oi ∈ Rm and ai ∈ Rd
and from regression bounds amin,amax ∈ Rd we generate
negative samples {ãji}

Nneg.
j=1 . We estimate p(a|o) by using our

negative samples to approximate our normalizing constant:
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To perform inference, given some observation o, we mini-
mize our learned energy function, Eθ(o,a), over actions in
A using a sampling-based optimization procedure.

IV. METHOD

Here we present the details of our proposed Implicit
Kinematic Policies (IKP) method. First, we will present our
extension to the implicit policy formulation which provides
multiple action space representations as input. (Sec. IV-
A). Sec. IV-A.1 also compares the implicit multi-action-
space formulation to its explicit counterpart and discusses
the relevant tradeoffs. We then describe how to perform
autoregressive training and inference with implicit policies

in a way that exposes the action trajectories of every joint
and link in the robot to the model (Sec. IV-B). Finally, we
discuss a motivating application of controlling miscalibrated
robots for precise tasks, and how IKP is uniquely suited to
automatically compensate for this noise through the use of
strategically placed residual blocks in the model (Sec. IV-C).

A. Multi-Action-Spaces With Implicit Policies

Our formulation enables the implicit policy â =
arg minaEθ(o,a) to have access to multiple action spaces,
which are constrained to be consistent. Specifically, our
implicit multi-action-space formulation is of the form:

arg min
a,a′,...

Eθ(o,a,a
′, ...)

s.t. a = T (a′), ...
(1)

where a ∈ A is one parameterization of the action space,
a′ ∈ A′ is a different parameterization of the action space,
and T (·) : A → A′ is a transformation between the two
action spaces. Of course, N different consistent parameter-
izations of the action space could be represented, which is
depicted in Eq. 1 by the ellipses (...).

In particular for robots, we are interested in representing
both joint-space and cartesian-space actions, which is a case
of Eq. 1 in which the transformation between the two action
spaces is forward kinematics (FK):

arg min
ajoints, acartesian

Eθ(o,ajoints,acartesian)

s.t. acartesian = FK(ajoints)
(2)

Specifically, we accomplish this by first sampling input
actions in joint space ajoints ∈ Ajoints, then computing the
corresponding Cartesian (task) space actions via forward
kinematics (FK), acartesian = FK(ajoints), and finally con-
catenating and passing the combined representation into the
model Eθ(o,ajoints,acartesian). A visualization of this model
is shown in the middle portion of Fig. 2. Our hypothesis is
that the model can use this redundant action representation
to exploit patterns in both spaces, akin to automatically
discovering the best combination of action spaces – this
hypothesis will be tested in our Experiments section. As
we will show in Sec. IV-B, we can perform training and
inference for Eθ through using autoregressive derivative-free
optimization.

1) Multi-Action-Spaces With Explicit Policies: Consider
the above formulation in contrast to an explicit policy, â =
fθ(o), where the mapping fθ(·) maps to one specific action
space. It is possible to provide different losses on different
transformations of the explicit policy’s action space, for
example Ljoints(â,a

∗) and Lcartesian(FK(â), FK(a∗)), where
FK represents differentiable forward kinematics. However,
this can lead to conflicting gradients and requires choosing
relative weightings, λ, between these losses: Ltotal = Ljoints +
λLcartesian. This issue of loss balancing is exacerbated if the
explicit policy were to regress the Cartesian representation
of every link in the robot in addition to the joint configura-
tion and end-effector pose. Additionally, the explicit policy
predicts a single joint configuration even though there may
be multiple correct configurations when using kinematically



Fig. 3. Method overview. Given an image captured from an RGB camera overlooking the robot workspace (a), we feed it as input to a deep convolutional
network (b) to get a latent state representation. We then predict desired robot joint actions by leveraging implicit autoregression [8], [20] (c) with state-
conditioned EBMs to progressively sample each action dimension (joint angle) at a time: i.e., we uniform sample jn, feed it to FKn (forward kinematics
to link n, prepended with deep layers) to get the Cartesian pose Cn, which is then concatenated with the latent state and all previously sampled argmin
joint dimensions [jn, jn−1, ..., j0] and Cartesian representations [Cn−1, ...,C0] and fed to an 8-layer EBM En to compute the argmin over jn.

redundant robots. It is possible to first regress Cartesian
actions and subsequently recover the corresponding joint
configuration via inverse kinematics, however, IK solvers are
only approximately differentiable which poses challenges for
end-to-end training. A visualization of this explicit policy is
shown in the rightmost column of Fig. 2.

B. Autoregressive Implicit Training and Inference

As in [8], we employ an autoregressive derivative-
free optimization method for both training and inference.
Sampling-based, derivative-free optimization synergizes with
the multi-action-space constrained energy model (Eq. 1),
since gradient-based optimization (i.e. through Langevin
dynamics [8]), while possible, would require a solution to
synchronize between the different action spaces.2

The autoregressive procedure uses m models, one model
Ejθ(o,a

0:j) for each dimension j = 1, 2, ...,m. In contrast
with prior work [8], instead of a only representing a single
action space, our proposed method represents, for each
jth model, both the 6DoF Cartesian pose of the jth link
and the joint of that link into a. Similarly in o we also
represent the dual Cartesian-and-joint state of each link.
Since our method strictly samples actions in joint space and
the state is represented by the joint configuration, the Carte-
sian representations for both the state o and actions a are
acquired through FK(o) and FK(a) for every dimension
j = 1, 2, ...,m. We visualize this procedure in Fig. 3.

C. Residual Forward Kinematics

In robotics, we often assume access to accurate kinematic
descriptions and joint encoders, but this assumption can be
a significant source of error in the context of low-cost or
cable-driven robots. In these settings, the errors often take
the form of fixed, unknown linear offsets in each joint motor
encoder or link representation. If calibration isn’t performed,
both cases can cause heavy non-linear offsets in end-effector

2Specifically, when using the implicit model gradients, with learning
rate λ, the actions are updated as ak+1

joints = akjoints − λ∇ajointsEθ(·) and
ak+1

cartesian = akcartesian − λ∇acartesianEθ(·). The updated actions actions may
not be consistent with each other – even for an analytical model, there will
be differences in the first-order derivatives of the different spaces.

space which can drastically affect the performance on high-
precision tasks. By adding dense residual blocks both before
and after joint actions are sampled in the autoregressive
procedure, we can encourage our model to learn these
linear offsets at each joint and link rather than solving
the more difficult problem of learning a highly non-linear
offset in task space. This extension is only possible due
to the full differentiability of the forward kinematics layer,
which allows gradients to flow through the residual blocks.
Concretely, we redefine our multi-action-space formulation
with residuals as follows:

arg min
ajoints, acartesian

Eθ(o,ajoints,acartesian)

s.t. acartesian = FK
(
ajoints + ∆θ(ajoints)

) (3)

where ∆θ(ajoints) ∈ Ajoints is a new learnable module in the
implicit model which gives the model the inductive bias that
there may be imperfect calibration of the joint measurements
(i.e., biased joint encoder measurements). The module ∆θ(·)
can be learned during training and we hypothesize that the
EBM may be able to automatically learn the ∆θ(·) which
provides the lowest-energy fit of the data. This can be inter-
preted as automatically calibrating the biased joint encoders.
Experiments testing this hypothesis are in Section V-B.

V. EXPERIMENTS

We evaluate IKP across several vision-based continuous
control manipulation tasks with quantitative experiments
against baseline methods in simulation, as well as qualitative
results on a real robot. All tasks require generalization to
unseen object configurations at test time. The goals of our
experiments are two-fold: (i) across tasks where one action
space substantially outperforms the other, we investigate
whether IKP can achieve the best of both and perform
consistently well across all tasks, and (ii) given a miscal-
ibrated robot with unknown offsets in the joint encoders
(representing miscalibration or low-cost encoders), we study
whether IKP can autonomously learn to compensate for
these offsets while still succeeding at the task. Across all
experiments, a dataset of expert demonstrations is provided
by a scripted oracle policy (in simulation), or by human
teleoperation (in real).



Fig. 4. Expert trajectories for bimanual sweeping are characterized by
distinct patterns in Cartesian space (b), e.g., y-values experience a mode-
change in the latter half of the episode when the policy switches bowls in
which to drop particles. Such patterns are less salient in joint space (a). The
opposite is true for bimanual flipping, where linear patterns emerge in joint
space (c), whereas they are less salient in Cartesian space (d) especially
with randomized end effector poses (semi-transparent plots).

A. Simulated Bimanual Sweeping and Flipping
In a simulated environment, we evaluate on two bimanual

tasks – sweeping and flipping – both of which involve
two 7DoF KUKA IIWA robot arms equipped with spatula-
like end-effectors positioned over a 0.4m2 workspace. The
setup for sweeping is identical to that presented in Florence
et al. [8], where given a pile of 50-60 particles on the
workspace, the task is to scoop and evenly distribute all
particles into two bowls located next to the workspace. For
flipping, given a bowl of 20-30 particles attached to the
top of a 0.2m3 box, the task is to flip the box to pour
the particles into a larger bowl positioned near the base
of the arms. Both tasks are designed to involve significant
coordination between the two arms. During sweeping, for
example, scooping up particles and transporting them to the
bowls requires carefully maintaining alignment between the
tips of the spatulas to avoid dropping particles. Flipping, on
the other hand, requires aligning the elbow surfaces against
the sides of the box, and using friction to carry the box as it
pours the particles into the bowl – any subtle misalignment of
the elbow against the sides can lead to the box slipping away
or tipping over. For both tasks, we generate fixed datasets of
1,000 demonstration episodes for imitation learning using a
scripted oracle with access to privileged state information,
including object poses and contact points, which are not
accessible to policies.

We train two Implicit BC [8] baselines without Residual
Kinematics: one using a 12DoF Cartesian action space (6DoF
end-effector pose for each arm), and another using a 14DoF
joint action space (7DoF for each arm). From the quantitative
results presented in Tab. I, we observe that the performance
of Implicit BC on bimanual sweeping degrades substantially
when using a joint action space. This is likely that learning
the task (ı.e. distribution of oracle demonstrations) involves
recognizing a number of Cartesian space constraints that
are less salient in joint space: e.g., keeping the Cartesian
poses of the spatulas aligned with each other while scooping
and transporting particles, and maintaining z-height with

Fig. 5. Simple constant joint encoder errors (which may appear from drift
in low-cost or cable-driven robots) can propagate to non-linear offsets in
Cartesian space. By learning joint space residuals to compensate for these
offsets, IKP is better equipped to generalize over such errors than standard
end-to-end policies trained in Cartesian space for tabletop manipulation.

the tabletop. For bimanual flipping, on the other hand, we
observe the opposite: where the performance of Implicit BC
performs well with joint actions, but poorly with Cartesian
actions. We conjecture that the task involves more whole-
body manipulation, where fitting policies in joint space are
more likely to result in motion trajectories that accurately
conform to the desired elbow contact with the box.

TABLE I
PERFORMANCE MEASURED IN TASK SUCCESS (AVG ± STD % OVER 3 SEEDS)

Task Sweeping Flipping
Oracle’s action space cartesian joints
Policy Action Space

Cartesian 79.4 ± 2.1 38.6 ± 5.2
Joints 44.3 ± 3.2 98.4 ± 1.4
Joints + Cartesian (Ours) 85.9 ± 1.5 97.5 ± 1.2

Our proposed method, Implicit Kinematic Policies (labeled
as Joints + Cartesian in Tab. I) leverages both action spaces.
Results suggest its performance is not only on par with the
best bespoke action space for the task, but also surprisingly
exceeds the performance of Cartesian actions for bimanual
sweeping. Upon further inspection of the action trajectories
for bimanual sweeping, it is evident that the Cartesian space
action trajectories (Fig. 4b) are lower frequency and contain
more piecewise linear structure in comparison to the joint
space action trajectories (Fig. 4a). Implicit policies have
shown to thrive in conditions where this structure is present
[8]. In contrast, for bimanual flipping, the joint space action
trajectories (Fig. 4c) appear much more linear and low fre-
quency than the corresponding arc-like Cartesian trajectories
(Fig. 4d). We also add small perturbations to the end-effector
pose highlighted by the semi-transparent lines in plot (d)
of Fig. 4. Note that the Implicit (Cartesian) policy uses a
generic IK solver which can return multiple distinct joint
target commands, causing less stable trajectories overall.

B. Simulated Miscalibrated Sweeping and Insertion
We design two additional tasks to evaluate IKP’s ability

to learn high precision tasks in the presence of inaccurate
joint encoders, described in Sec. IV-C. To replicate such a



scenario, we simulate these errors by adding constant < 2 de-
gree offsets to each of the six revolute joints on a UR5e robot.
These offsets are visualized and described in more detail in
Fig. 5. We test the effect of these offsets on the bimanual
sweeping task and a new insertion task where the goal is to
insert an L-shaped block into a tight fixture. Demonstrations
for both tasks are provided in the form of a Cartesian scripted
oracle with privileged access to the underlying joint offsets
and can compensate for them. This is akin to a human using
visual servoing to compensate for inaccurate encoders when
teleoperating a real robot to collect expert demonstrations.
Although both tasks are generally well-defined in Cartesian
space as a series of linear step functions, the joint offsets
induce high-frequency non-linear artifacts in the end-effector
trajectory (Fig. 5b and 5d) causing poor performance with
the Implicit (Cartesian) policy (results in Tab. II). Poor
performance persists for miscalibrated insertion despite using
10x the data. Alternatively, even though the encoder offsets
only cause linear shifts in the joint trajectories (Fig. 5a and
5c), both tasks are less structured in joint space and as a
result Implicit (Joints) performs significantly worse on mis-
calibrated bimanual sweeping and comparatively worse on
miscalibrated insertion. Implicit (Joints) performs relatively
well on the miscalibrated insertion task due to the simplicity
of the pick and place motion, but struggles to generalize
when the block nears the edge of workspace as the joint
trajectories become increasingly non-linear in those regions.
The performance only slightly improves when using 1000
demonstrations. IKP provides a best-of-all-worlds solution
by learning the linear offsets in joint space through the resid-
ual blocks while simultaneously exploiting the unperturbed
Cartesian trajectories through forward kinematics on the
shifted joint actions to generalize. IKP achieves the highest
performance on miscalibrated insertion with both 100 and
1000 demonstrations, and significantly higher performance
on miscalibrated bimanual sweeping. Interestingly, not only
do Explicit and ExplicitFK perform significantly worse than
both Implicit (Joints) and IKP for both tasks, but ExplicitFK
also provides little to no additional benefit over Explicit, even
in the presence of more data.

TABLE II
MISCALIBRATED JOINT ENCODER EXPERIMENTS, PERFORMANCE MEASURED IN

TASK SUCCESS (AVG ± STD. % OVER 3 SEEDS). (“J+C”) IS SHORT FOR

JOINTS+CARTESIAN.

Task Sweeping Block Insertion
Oracle’s action space cartesian cartesian
Method (Action Space) 1000 100 1000

Explicit (Joints) 38.2 ± 3.4 73.8 ± 4.3 74.2 ± 2.5
ExplicitFK (J + C) (Ours) 40.3 ± 4.6 72.4 ± 3.8 75.4 ± 2.8
Implicit (Cartesian) 3.1 ± 2.2 0.0 ± 0.0 0.0 ± 0.0
Implicit (Joints) 46.3 ± 1.8 82.3 ± 2.9 85.2 ± 3.1
IKP (J + C) (Ours) 84.5 ± 1.2 88.8 ± 3.4 92.4 ± 2.6

C. Real Robot Sorting, Sweeping, and Alignment

We conduct qualitative experiments with a real UR5e
robot on two tasks: 1) sorting two blocks into bowls and

Fig. 6. Real robot IKP rollouts on a sweeping and sorting task (top two
rows) and a block alignment task (bottom row).

subsequently sweeping the bowls, and 2) aligning a red block
with a blue block, where both tasks have initial locations
randomized). Our goal with these experiments is two-fold:
i) to demonstrate that IKP can run on real robots with noisy
human continuous teleop demonstrations with as few as
100 demonstrations, and ii) to show that Implicit Kinematic
Policies can perform both whole-body and prehensile tasks.
Demonstrations for the block sorting portion of the first
task are provided using continuous Cartesian position control
based teleoperation at 100 Hz with a 3D mouse. Once the
blocks are sorted, the teleoperator switches to a joint space
PD controller with the same 3D mouse to guide the arm
into an extended pose in order to sweep the bowls. For the
alignment task, demonstrations are also provided using x,
y and z Cartesian PD control at 100 Hz. Both tasks take
480×640 RGB images (downsampled to 96×96) from an
Intel RealSense D435 camera at a semi-overhead view as
input to the policy, and no extrinsic camera calibration is
used. We show successful rollouts for both tasks in Fig. 6.
We plan to further investigate quantitative experiments after
COVID-related restrictions relax.

VI. DISCUSSION

In future work, we will investigate using the multi-action-
space formulation to extend beyond joint and cartesian
PD control by incorporating the underlying forward and/or
inverse robot dynamics into the network which will allow
us to expose joint torques and velocities to our model in a
fully differentiable way. We hypothesize that this additional
information will be particularly helpful in dynamic manipu-
lation tasks (e.g. flipping a pancake) and visual locomotion
where torque and velocity action trajectories may appear
more structured. We would also like to further test our
residual framework within IKP on robots that have non-
linear drift in joint space which may represent a larger set
of low-cost robots. Finally, we would like to utilize our fully
differentiable residual forward kinematics module to learn
the link parameters themselves, which can be a promising
direction for controlling soft and/or continuum robots.
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