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Abstract— Autonomous fabric manipulation is a longstanding
challenge in robotics, but evaluating progress is difficult due
to the cost and diversity of robot hardware. Using Reach,
a cloud robotics platform that enables low-latency remote
execution of control policies on physical robots, we present
the first systematic benchmarking of fabric manipulation al-
gorithms on physical hardware. We develop 4 novel learning-
based algorithms that model expert actions, keypoints, reward
functions, and dynamic motions, and we compare these against
4 learning-free and inverse dynamics algorithms on the task
of folding a crumpled T-shirt with a single robot arm. The
entire lifecycle of data collection, model training, and policy
evaluation was performed remotely without physical access to
the robot workcell. Results suggest a new algorithm combining
imitation learning with analytic methods achieves human-
level performance on the flattening task and 93% of human-
level performance on the folding task. See https://sites.
google.com/berkeley.edu/cloudfolding for all data,
code, models, and supplemental material.

I. INTRODUCTION

Reproducibility is the cornerstone of scientific progress.
It allows researchers to verify results, assess the state of the
art, and build on prior work. Recent advances in computer
vision (CV), for instance, were facilitated by the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) [1], a
standard benchmark in CV literature.

In robotics, there is no equivalent benchmark. Simulation
benchmarks [2], [3], [4] are useful but cannot replace phys-
ical experiments as the “reality gap” remains prohibitively
large [5]. Physical robots are expensive and vary greatly
in their capabilities and morphologies. Each research lab
has a unique hardware setup, making it difficult to reliably
compare results. Cost also poses a significant obstacle to
individuals or institutions who wish to perform robotics
research, but lack the resources to do so.

One option is to provide shared access to a remote
hardware testbed via the Cloud. In this paper, we describe al-
gorithms and experiments performed entirely remotely using
Reach, a prototype hardware testbed from Robotics at Google
[6]. Reach includes several physical robot workcells and
open source software for remote execution of control policies
in real time. Each workcell is configured for a benchmark
task: one such task is folding a T-shirt with a UR5 robot arm
and 3-jaw piSOFTGRIP gripper [7] (Figure 1).
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Fig. 1. Reach cloud robotics workcell developed by Robotics at Google.

While folding T-shirts and other garments is a ubiquitous
daily task for humans, manipulating fabric remains chal-
lenging for robots. Fabric is difficult to model due to its
infinite-dimensional state space, complex dynamics, and high
degree of self-occlusion. Furthermore, accurately simulating
gripper contact mechanics and fabric self-collision remains
elusive for existing fabric simulators due to challenges in
modeling deformation, friction, and electrostatic forces [4],
[8], highlighting the need for physical benchmarking.

This paper makes the following contributions: (1) four
novel learning-based algorithms for the unimanual folding
task, (2) the first physical benchmarking of fabric manipu-
lation algorithms, and (3) a case study of robotics research
performed exclusively using a remotely managed robot work-
cell. This paper does not contribute the design of the Reach
platform, which is being developed by a larger team at
Google [6].

II. RELATED WORK

Remote Testbeds: Remote robotics testbeds include Rob-
otarium [9] for swarm robotics and Duckietown [10] for
autonomous driving. The most similar remote testbed is
from Bauer et al. [11], who hosted the online “Real Robot
Challenge” for manipulation in 2020 and 2021 at Neural
Information Processing Systems (NeurIPS). Six robotics
groups from around the world were able to access their
tri-finger robot [12] remotely via the Internet and evaluate
their algorithms on the shared infrastructure. Our study
differs from this project in the following ways: (1) they



consider dexterous manipulation of rigid objects while we
consider deformable object manipulation; (2) they use a
custom tri-finger robotic system while we use a UR5 robot
arm, standard in industrial settings; and (3) the Real Robot
Challenge submissions are either learning-free [13], [14] or
learned only in simulation [15], [16], while we consider
learning algorithms trained on real data.

Reproducibility in Robotics: Several other approaches
have been proposed for facilitating reproducibility in robotics
research. One direction is benchmarking in simulation, where
evaluation is inexpensive and reproducible. Simulation en-
vironments have been developed for robot locomotion [3],
household tasks [2], and deformable object manipulation [4].
While researchers have made significant progress on these
benchmarks, especially using reinforcement learning [17],
such advances do not readily transfer to physical robots
[5]. Another initiative for improving reproducibility is de-
velopment of a low-cost open source platform that can
be assembled independently by different labs [18], [12].
A third approach considers benchmarking performance on
large offline datasets such as robot grasps on 3D object
models, e.g., EGAD [19] and Dex-Net [20]; RGBD scans
and meshes of real-world common household objects, e.g.,
the YCB Object and Model set [21]; and video frames of
robot experience, e.g., RoboNet [22]. These datasets have
been used to explore and compare algorithms [23], but they
limit evaluation to states within the dataset.

Autonomous Fabric Folding: Autonomous fabric manip-
ulation is an active challenge in robotics. Maitin-Shepard
et al. [24] and Doumanoglou et al. [25] present early ap-
proaches to reliably fold towels and garments, respectively,
from crumpled initial configurations. Weng et al. [26] and Ha
et al. [27] develop learning-based algorithms for fabric ma-
nipulation using optical flow and dynamic flinging motions
respectively. However, these approaches were evaluated on
dual-armed robots, which require coordination and are more
costly. There has been recent interest in learning algorithms
for unimanual (single-arm) fabric manipulation [28], [8].
These achieve strong results on fabric smoothing and fold-
ing tasks, but robust and precise unimanual T-shirt folding
remains an open problem. Lin et al. [4] propose an environ-
ment for fabric manipulation and benchmark several learning
algorithms, but limit results to simulation. Garcia-Camacho
et al. [29] propose benchmarking tasks for bimanual fabric
manipulation but allow robot hardware to vary and do not
evaluate learning algorithms.

III. THE GOOGLE REACH TESTBED

In this section, we review the details of the Google Cloud
Robotics testbed [6] that are most salient for this case study.

A. Hardware
See Figure 1 for an image of the workcell. The robot

is a single Universal Robot UR5e arm equipped with a
Piab piSOFTGRIP vacuum-driven soft 3-jaw gripper [7]. The
workcell is equipped with 4 Intel Realsense D415 cameras
which each capture 640 ⇥ 360 RGB images at 20 FPS and

Fig. 2. The client PyReach viewer, which updates the RGB images from
the workcell cameras at 10 Hz and depth images at 1 Hz. Our algorithms
use the overhead RGB images (top left panel). Note that the lower two
panels on the right are from the same camera as the top left panel.

640 ⇥ 360 depth images at 1 FPS. The worksurface is a
bright pink silicone mat and the garment is a blue crew-
neck short sleeve T-shirt. The workcell is maintained by lab
technicians who are onsite 8 hours a day to reset the robot
and troubleshoot system-level errors.

B. Software

Reach includes PyReach, an open source Python library
developed by Robotics at Google for interfacing with the
Reach system. The software includes infrastructure for au-
thenticated users to establish a network connection with the
robot server over the Internet, a viewer tool for locally dis-
playing the 4 workcell camera feeds in real time (Figure 2),
a simulated workcell that mimics the real workcell for safely
testing motions prior to deployment on the real system, and
utility functions such as a pixel-to-world transform using
the depth camera and conversions between different pose
representations.

PyReach also includes PyReach Gym, an application pro-
gramming interface (API) modeled after OpenAI Gym [3].
Remote agents receive observations of the environment and
request actions through this interface. In particular, at each
time step with frequency up to 10 Hz, a remote agent can
receive the joint angles and Cartesian pose of the arm, the
binary state of the gripper (closed or open), and camera
observations. The agent specifies an action to execute as a
desired pose of the arm in either joint or Cartesian space and
a desired binary state of the gripper.

C. Garment Folding Case Study: Problem Definition

We assume that the target folded configuration is known
beforehand, that training and evaluation are performed in real
(not simulation), that the hardware setup is as specified in
Section III-A, and that the garment stays the same during
training and evaluation. The task is to iteratively execute
two procedures in a loop: (1) crumple the T-shirt and (2)



Fig. 3. Examples of crumpled states (Row 1) and folded states (Row 2).

ot Cropped RGB observation of the workcell state from the
overhead Realsense camera at timestep t (Figure 2).

at The action at time t, expressed as a pick-and-place action
(p0, p1) in pixel coordinates except in Section IV-A.4.

om
t Color-thresholded mask of the T-shirt analytically com-

puted from ot.
com(om

t ) A function that returns the visual center of the T-shirt.
c(om

t ) A function that computes the 2D fabric coverage.
T A template image of a fully flattened shirt in the workspace.

TABLE I
NOTATION FOR SECTION IV.

fold the T-shirt. Crumpling is performed via a series of 6
random drops of the T-shirt resulting in an average of 37.5%
coverage (Section V-B), where coverage is the fraction of
the maximum 2D area the T-shirt is able to attain. The
folding task is to manipulate the T-shirt toward the target
configuration in Figure 3. We decompose the folding task
into two subtasks: (1) flattening, i.e., spreading out from an
initially crumpled configuration until the garment is smooth,
followed by (2) folding, i.e., folding the t-shirt from initially
flattened until sufficiently close to the target configuration.
We measure folding accuracy with a combination of Intersec-
tion over Union (IOU) and wrinkle detection (Section V-C).

IV. GARMENT FOLDING ALGORITHMS

Due to the unique challenges of the flattening and folding
subtasks, we benchmark each subtask with its own set of
algorithms. Hyperparameter and implementation details for
all algorithms are available in the appendix, and notation
for this section is defined in Table I. With the exception
of Section IV-A.4, all actions are quasistatic pick-and-place
actions from pick point p0 to place point p1, where p0 and
p1 are specified as (x, y) coordinates in pixel space; see
Appendix VIII-D for implementation details.

A. Flattening: 4 New Algorithms
1) Learned Pick-Analytic Place (LP0AP1): Inspired by

prior work in imitation learning for fabric manipulation [8],
[30], we develop an algorithm to learn pick points from
human demonstrations. Since we empirically observe that
human-selected pick points combined with analytic placing
performs well on flattening, we propose only learning the
pick points p0 and analytically computing place points with
the strategy in Section IV-B.3 to improve sample efficiency.
While other work has considered learning a pick-conditioned

Fig. 4. LP0AP1 pick point predictions on the test set. Bright red and yellow
regions correspond to high probability pick points. The output heatmap is
able to capture the multimodality in human actions.

place policy for fabric manipulation [31], we define ana-
lytic placing actions that make the pick-conditioned policy
unnecessary. To handle the inherent multimodality in the
distribution of human-specified pick points, we train a fully
convolutional network (FCN) [32] to output a heatmap
corresponding to probability density instead of regressing to
an individual action (Figure 4). The FCN can be interpreted
as an implicit energy-based model [33], [34] where the state
and action pairs are the receptive fields of the network. As
in DAgger [35], we reduce distribution shift by iteratively
adding on-policy action labels to the dataset.

2) Learning Keypoints (KP): This approach separates
perception from planning and proposes to only learn the per-
ception component. Specifically, we collect a hand-labeled
dataset of images with up to 5 visible keypoints on the
fabric corresponding to the collar, 2 sleeves, and 2 base
corners (Figure 5). While the dataset generation policy is
open-ended for this approach, we choose to first train an
initial KP policy on random data (Section IV-B.1) and then
augment the dataset with states encountered under the policy
to mitigate distribution mismatch similar to DAgger [35]. We
train a FCN with 3 output heatmaps to predict each of the 3
classes of keypoints separately. Using keypoint predictions,
we propose an analytic corner-pulling policy inspired by
[8] that iteratively moves the keypoints from their current
positions to their respective locations on a template flattened
shirt T . To reduce ambiguity, we compute the rotation and
translation of T that best matches the current state and
first move the keypoint farthest from its target location to
its destination. To our knowledge, the combination of the
FCN for multi-class keypoint prediction, T-shirt template
matching, and corner pulling is a novel flattening policy.

3) Coverage Reward Learning (CRL): This approach
seeks to learn a reward function corresponding to fabric



Fig. 5. KP predictions on the test set. The predicted collar is colored green,
the two sleeves are red, and the two base points are blue. Shirt images are
shown in grayscale for viewing convenience.

coverage c(·) from data and execute a policy using this
reward function. We learn this reward with self-supervised
learning and execute a greedy policy that seeks to maximize
the 1-step reward at each time step. Specifically, we fit
a Convolutional Neural Network (CNN) R✓(ot,at) to the
scalar change in coverage (i.e., c(om

t+1)�c(om
t )) that results

from executing action at on ot. At execution time we
randomly sample thousands of pick points on the fabric
mask om

t and place points in the workspace and select the
action with the highest predicted change in coverage. To
our knowledge, greedy planning over a learned model of
coverage dynamics for fabric flattening is novel. Once again,
dataset generation is a design choice; here, we opt for a
random action policy (Section IV-B.1) to enable large-scale
self-supervised data collection and increase data diversity.

4) Drop (DROP): Inspired by Ha et al. [27], we inves-
tigate whether dynamic motions can leverage aerodynamic
effects to accelerate the flattening of the shirt when combined
with Approach IV-A.1. We propose a simple vertical drop
primitive that grabs the visual center of mass com(om

t ), lifts
the shirt into the air, and releases. We profile the coverage
dynamics of the drop and the LP0AP1 pick-and-place and
run Q-value iteration to determine which primitive to execute
(i.e., drop or pick-and-place) given a discretized version
of the current coverage c(om

t ). Q-value iteration on the
following reward function produces a policy that minimizes
the total number of actions required to flatten the shirt:

r(s = c(·), a) =

8
<

:
�1 c(·) < C

0 c(·) � C

where C is a coverage threshold defined in Section V-B and
c(·) is the discretized current coverage.

B. Flattening: 4 Baselines
1) Random (RAND): As a simple baseline, we implement

a random pick-and-place policy that selects p0 uniformly
at random from om

t and p1 uniformly at random in the
workspace within a maximum distance from p0.

2) Human Teleoperation (HUMAN): As an upper bound
on performance and action efficiency, a human selects pick
and place points through a point-and-click interface (see the
appendix for details).

3) Analytic Edge-Pull (AEP): We implement a fully an-
alytic policy to explore to what extent learning is required
for the T-shirt flattening task. The policy seeks to flatten the
shirt by picking the edges and corners and pulling outwards.
Formally, we sample p0 uniformly from the set of points
in the shirt mask om

t that are within a distance k from the
perimeter of om

t , where k is a hyperparameter. Given p0, we
compute p1 by pulling a fixed distance l in the direction of
the average of two unit vectors: (1) away from com(om

t ) and
(2) toward the nearest pixel outside om

t .
4) Learning an Inverse Dynamics Model (IDYN): A in-

verse dynamics model f(ot,ot+1) produces the action at
that causes the input transition from ot to ot+1. Here we
implement the algorithm proposed by Nair et al. [36], which
learns to model visual inverse dynamics. Specifically, we
approximate the dynamics with a Siamese CNN f✓(·, ·)
trained on the random action dataset collected in Section IV-
A.3. As in [36], the network factors the action by predicting
the pick point p0 before the pick-conditioned place point p1
to improve sample efficiency. During policy evaluation, the
inputs to the network are the current observation ot and the
template goal observation T .

C. Folding Algorithms
1) Human Teleoperation (HUMAN): As an upper bound

on performance, a human chooses pick and place points for
folding through a point-and-click interface.

2) Analytic Shape-Matching (ASM): Since the folding
subtask is significantly more well-defined than flattening,
we investigate whether an open-loop policy computed via
shape matching can successfully fold the shirt. We specify
a fixed sequence of folding actions with a single human
demonstration. During evaluation, we compute rotations and
translations of the corresponding template images to find the
best match with ot and transform the folding actions in the
demonstration accordingly.

3) Learned Pick-Learned Place (LP0LP1): This approach
is identical to Section IV-A.1 but learns both pick points
and place points, as the analytically computed place point
is designed for flattening. Since folding demonstrations are
difficult to obtain (the garment must be flattened first) and
successful folding episodes are short-horizon and visually
similar, we collect only two demonstrations and augment the
data by a factor of 20 with affine transforms that encourage
rotational and translational invariance.

4) Fully Autonomous Flattening with Analytic Shape-
Matching (A-ASM): The algorithms above are evaluated after
the garment is fully flattened via human teleoperation to



study the folding subtask in isolation. This approach, A-
ASM, combines the best-performing autonomous flattening
algorithm (i.e., LP0AP1) with ASM (Section IV-C.2) to
evaluate the performance of a fully autonomous pipeline for
manipulating the garment from crumpled to folded.

V. EXPERIMENTS

A. Experimental Setup

All actions executed on the robot are either a pick-and-
place primitive (p0, p1) or a drop primitive (for the DROP
algorithm). See Appendix VIII-D or the code for the exact
implementation details. During data collection, actions are
chosen either autonomously (e.g., with RAND in Section IV-
B.1) or by a human via a point-and-click graphical user
interface (see the appendix). At execution time, actions are
parameterized by outputs from trained models.

To improve the performance of the deployed flattening
algorithms, we include two additional primitives: (1) a recen-
tering primitive for when the shirt has drifted too far from
the center of the workspace, and (2) a recovery primitive that
executes a random action when the coverage is stalled for
an extended period of time. See the appendix for ablation
studies suggesting the usefulness of such primitives.

B. Flattening Metrics

We perform 10 trials of all flattening algorithms from an
initially crumpled state (Figure 3). Crumpling is performed
autonomously via a series of 6 actions, each of which grabs
the T-shirt at a random point, quickly lifts it into the air, and
releases, resulting in an initial coverage of 37.5% ± 14.9%
over 45 trials. In Table II we report maximum coverage as
a percentage of the pixel coverage of a fully flattened shirt,
i.e. 47,000 pixels in the shirt mask om

t . We also report the
number of samples used to train the algorithm, the execution
time per action, and the number of actions executed, where
we allow a maximum of 100 actions but terminate early if
a coverage threshold is reached (C = 45,000 pixels or 96%
of maximally flattened).

C. Folding Metrics

We perform 5 trials of all folding algorithms from an
initially flattened state. A-ASM initial states are flattened
by LP0AP1 while all other initial states are flattened via
human teleoperation. In Table III we report the number
of actions and execution time per action, and we measure
the quality of the final state against a goal configuration
(Figure 3) according to two metrics: (1) intersection over
union (IoU) and (2) a penalty for edges and wrinkles. IoU
is calculated between the shirt mask and the goal template,
after rotating and translating the goal to best match the shirt
mask. The wrinkle penalty calculates the fraction of pixels in
the interior of the shirt mask detected as edges by the Canny
edge detector [37]. A high-quality folding episode achieves
a high IoU score and low edge penalty; for reference, the
scores for a fully folded goal image are provided in Table III
as GOAL.

D. Flattening Results
See Table II and Figure 6 for results. We find that fully

analytical policies such as RAND and AEP are unable to
attain high coverage while HUMAN is able to consistently
flatten the garment in 11.9 actions on average, suggesting
the efficacy of the pick-and-place action primitive and the
value of intelligently selecting pick points. Interestingly, we
find that despite training an inverse dynamics model on
nearly 4,000 real samples, IDYN is unable to outperform
RAND. We hypothesize that the fully flattened goal image
T provided as input is too distant from the encountered
states, resulting in a data sample outside the training data
distribution.

CRL is better able to leverage the large self-supervised
dataset as it attains higher coverage, though it does require
more time per action due to thousands of forward passes
through the network during planning. However, since the
dataset is generated by RAND, which achieves an average
maximum coverage of only 55.0%, CRL has trouble pro-
ducing high-quality actions in the high coverage regime,
where it has encountered relatively little data. Modifications
to the dataset such as actively interleaving data collection
and training with policy execution is an interesting direc-
tion for future work. KP also achieves a higher maximum
coverage than AEP and RAND, but it is prone to execut-
ing regressive actions that prevent it from maintaining this
coverage. Results suggest that KP can be improved by (1)
autonomous labeling, e.g. with fiducial markers, to avoid
human error on challenging states with high self-occlusion,
and (2) improvements to the analytic corner-pulling policy,
which, for example, can struggle when all visible keypoints
are positioned correctly but other keypoints are not visible.

We find that LP0AP1 significantly outperforms all other
algorithms, rivaling HUMAN-level performance by consis-
tently reaching the threshold coverage C in less than 3
times the amount of actions as HUMAN. We hypothesize
that this is due to increased sample efficiency from analytic
placing in conjunction with the modeling power of the FCN,
which exhibits equivariance by sharing parameters for pixel
predictions and is an implicit energy-based model like other
state-of-the-art architectures [33], [34].

Finally, we find that DROP, which converges through Q-
iteration to a policy that executes a drop if coverage is
below 45% and LP0AP1 otherwise, is unable to improve
upon LP0AP1. This may occur due to our modeling of the
coverage dynamics of LP0AP1 as the same regardless of
the current coverage, whereas in reality, LP0AP1 improves
coverage faster in lower-coverage states (Figure 6). Nev-
ertheless, the DROP framework may be an effective way
to combine multiple action primitives given more powerful
dynamic primitives, such as bimanual actions that can better
leverage aerodynamic effects [27].

E. Folding Results
See Table III for results and Figure 7 for folding episodes.

The folding subtask presents unique challenges: (1) data
collection and evaluation require an initially flattened state,



Fig. 6. Coverage vs. time plot for the various flattening policies that we
benchmark on the workcell, averaged across 10 rollouts. Shading represents
one standard deviation, and the horizontal dashed line is the flattening
success threshold (96%).

TABLE II
FLATTENING RESULTS. WE REPORT THE METRICS IN SECTION

V-B, WHERE AVERAGES AND STANDARD DEVIATIONS ARE

COMPUTED OVER 10 TRIALS.

Algorithm % Coverage Actions Dataset Time/Act (s)
RAND 55.0 ± 6.0 100.0 ± 0.0 N/A 23.9 ± 2.5
HUMAN 97.7 ± 3.9 11.9 ± 5.3 N/A 45.1 ± 18.6
AEP 55.3 ± 5.5 100.0 ± 0.0 N/A 24.6 ± 2.0
IDYN 57.0 ± 5.9 100.0 ± 0.0 3936 23.7 ± 3.7
KP 72.4 ± 9.2 100.0 ± 0.0 681 25.7 ± 2.7
CRL 73.8 ± 8.4 100.0 ± 0.0 3936 32.1 ± 5.3
DROP 97.7 ± 1.3 38.6 ± 20.6 524 25.7 ± 0.8
LP0AP1 97.7 ± 1.4 31.9 ± 17.2 524 25.6 ± 0.9

which is difficult to attain through a remote interface, (2)
slightly incorrect actions can dramatically alter the fabric
state, often requiring re-flattening the garment, and (3) the
single-arm pick-and-place primitive is not well-suited for
the precise manipulation required for crisp garment folding.
Indeed, we find that even with folding optimizations to pick-
and-place (Section V-A), a human teleoperator attains only
76% of the goal IoU on average (Table III). However, we
find that both ASM and LP0LP1 are able to effectively lever-
age the primitive to achieve near human-level performance,
where ASM performs similarly to LP0LP1. We also find
that the fully autonomous pipeline A-ASM is able to reach
similar performance from an initially crumpled state, setting
a baseline score for the end-to-end folding task. Although
ASM is open-loop and LP0LP1 learns from only 2 demon-
strations, HUMAN cannot significantly outperform them due
to the difficulty of correcting inaccurate actions in folding
with only top-down pick-and-place actions. Further progress
on the folding subtask will likely require both improved
manipulation primitives and algorithmic innovations.

Fig. 7. Representative episodes of the folding subtask executed by HUMAN
(Row 1), LP0LP1 (Row 2), and ASM (Row 3). LP0LP1 and ASM achieve
performance competitive with human teleoperation.

TABLE III
FOLDING RESULTS. WE REPORT THE METRICS IN SECTION V-C,

WHERE AVERAGES AND STANDARD DEVIATIONS ARE

COMPUTED OVER 5 TRIALS.

Algo. IoU (") Wrinkle (#) Actions Time (s)
GOAL 0.98 0.093 N/A N/A
HUMAN 0.74 ± 0.06 0.088 ± 0.023 4.4 ± 0.5 63.8 ± 15.
ASM 0.69 ± 0.08 0.087 ± 0.038 4.0 ± 0.0 35.1 ± 1.9
LP0LP1 0.68 ± 0.08 0.112 ± 0.032 4.0 ± 0.0 35.7 ± 1.3
A-ASM 0.62 ± 0.12 0.112 ± 0.038 4.0 ± 0.0 35.5 ± 1.7

VI. CONCLUSION AND FUTURE WORK

In this work, we benchmark novel and existing algorithms
for T-shirt smoothing and folding tasks on a remote hardware
testbed. We find that policies that combine learning with an-
alytical methods achieve the highest performance in practice,
suggesting the value of future work in this area.

The ability to access robot hardware remotely, an intuitive
API, maintenance by dedicated staff, and the consistency of
the task environment all contribute to quick and effective
experimentation. On the other hand, onsite technicians have
limited availability, variable-latency 2D camera projections
are at times insufficient for fully understanding the scene, and
manual resets (e.g., flattening the T-shirt) become difficult
to perform, suggesting the importance of learning self-
supervised reset policies [38].

In future work, we will (1) further optimize performance
on the unimanual folding task, (2) evaluate alternative ap-
proaches such as continuous control, reinforcement learning,
and different action primitives, and (3) evaluate each algo-
rithm’s ability to generalize to other garments with variation
in color, shape, size, and material.
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