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Fig. 1: MANIP: General MANIP System Architecture At discrete timestep t, system sensors measure true system state xt yielding observation yt,
which is processed by the perception model g to estimate state x̂t. The system confidence estimator evaluates both state observability and state viability
(see Section III), represented by vector σt. Using x̂t and σt, a meta-policy switches between subpolicies for task completion or interactive perception to
generate action at to advance to state xt+1. This cycle continues until the meta-policy terminates with task completion or an error report.

Abstract— We propose a modular systems architecture, MA-
NIP, that can facilitate the design and development of robot
manipulation systems by systematically combining learned sub-
policies with well-established procedural algorithmic primitives
such as Inverse Kinematics, Kalman Filters, RANSAC outlier
rejection, PID modules, etc. (aka ”Good Old Fashioned En-
gineering (GOFE)”). The MANIP architecture grew from our
lab’s experience developing robot systems for folding clothes,
routing cables, and untangling knots. To address failure modes,
MANIP can facilitate inclusion of ”interactive perception” sub-
policies that execute robot actions to modify system state to
bring the system into alignment with the training distribution
and / or to disambiguate system state when system state
confidence is low. We demonstrate how MANIP can be applied
with 3 case studies and then describe a detailed case study
in cable tracing with experiments that suggest MANIP can
improve performance by up to 88%. Code and details are
available at: https://berkeleyautomation.github.io/MANIP/

I. INTRODUCTION

Many are excited about the potential for generalist robot
policies, monolithic end-to-end neural networks that map
sensory observations to low-level control outputs, to solve
a range of robot control problems [1, 2]. However at least in
the near term, it may be helpful to combine learned models
with well-established procedural algorithms, aka. ”Good Old
Fashioned Engineering (GOFE)”) to increase generality and
reliability [3].
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Interactive Perception, where robots change the environ-
ment to improve observability, has potential to increase the
generality and reliability of robot systems, as Bohg, et al. [4]
and others have noted [5–8]. Interactive Perception [4] builds
on Active Perception by adding physical interactions with the
environment, such as moving an object or occlusion. This
paper provides an architecture for incorporating interactive
perception into robot systems.

We propose MANIP, a Modular Architecture for
iNtegrating Interactive Perception into robot systems. MA-
NIP integrates classical procedural algorithms with learned
policies to address different stages of the task using a meta-
policy that determines which policy or primitive to activate
based on a general vector of confidence. With MANIP, the
system objective can switch between minimizing uncertainty
with interactive perception policies and maximizing reward
with task policies.

To develop MANIP, we began with an initial flowchart
similar to Figure 1 and applied it to two prior systems
our lab developed for surgical needle handover [9] and
cable untangling [10], and one prior system developed by
another lab for cable routing [11]. We iterated, adjusting the
architecture to make it compatible with each system.

In our experience, we have found MANIP to be useful as a
diagrammatic structure to compare system architectures and
to identify opportunities where interactive perception primi-
tives (procedural or learned) can be added to existing systems
to address failure modes and increase system performance.

This paper makes 3 contributions:

https://berkeleyautomation.github.io/MANIP/


1) MANIP, a modular architecture for integrating interac-
tive perception primitives with learned robot manipula-
tion policies.

2) Case studies mapping 3 prior systems [9–11] to MANIP
to illustrate how MANIP may be helpful for comparing
and extending existing systems.

3) A detailed case study with physical experiments demon-
strating how MANIP can be used to significantly im-
prove the performance of our existing cable tracing
system [12].

II. RELATED WORK

A. Robot Systems Architectures

There is a rich history of research on robot systems ar-
chitectures [13–18]. The Shakey robot [19] in the late 1960s
decomposed its architecture into 3 functional components:
sensing, planning, and executing [20]. Many systems use
a variant of the sense-plan-act (SPA) structure [16] or the
subsumption architecture [21], which is built hierarchically
from layers of interacting finite-state machines called behav-
iors. Examples include Arkin’s motor-control schemas [22]
and the autonomous robot architecture (AuRA) [23, 24].
One of the most common architectural designs is the three-
tier structure, comprising hierarchical connections between
planning, executive, and behavioral control levels [18]. Ex-
amples include the reactive action packages (RAPs) sys-
tem [25], ATLANTIS [26], LAAS [27], Syndicate [28],
and NASREM [29]. In general, the decomposition into
hierarchical modular subsystems can be along the temporal
dimension [30] or based on task abstraction [21, 31–33].
For more details and examples, see the excellent review by
Kortenkamp et al. [16].

Recent advances in machine learning and deep learning
attempt to replace procedural policies with learned models.
For example, the perception model can be a learned Convo-
lutional Neural Network (CNN) [34] or Vision Transformer
(ViT) [35], the motion planning optimization solver can be
warm-started by a neural network [36], and the low-level
controller can be a trained RL policy [37] or trained from
behavioral cloning [38].

System dynamics for many tasks can be framed as a
partially observable Markov decision process (POMDP), but
exact solutions to this problem are intractable since they
operate in the continuous state space and may require a full
history of actions and observations. One option to finding
approximate POMDP solutions is reinforcement learning
(RL) which balances exploration and exploitation. Yet it
remains a challenge for RL to learn long-horizon tasks with
large state-action spaces [39, 40] and sparse rewards [41, 42].
MANIP does not assume probabilistic state and transition
dynamics, nor an explicit reward or value function, nor a
discounted time horizon. MANIP’s state estimator and sys-
tem confidence estimator are generalizations of the POMDP
belief state estimator, as they may be functions of state
history or other intrinsic or extrinsic variables. MANIP can
be trivially extended to represent non-Markovian processes,
whereby state and system history can be integrated.

In addition to recent and ongoing efforts to develop
Large end-to-end Vision, Language, Action (VLA) models to
robotics [1, 2], large language and vision models (LLMs and
VLMs) are being used for end-to-end learned perception [43,
44], planning [45–47], and action modules [48, 49]. End-
to-end models have shown promise for sub-problems in
navigation [50], locomotion [51, 52], and manipulation [53,
54]. Yet results are mixed [55] and it seems likely that for the
near future, Good Old Fashioned Engineering (GOFE) will
continue to provide useful modular primitives for tasks such
as cable untangling [10] and routing [11], bagging [56], assis-
tive cooking [57], and navigation for extended periods [58].

B. Active Perception

Active perception was introduced concurrently in the
computer vision and robotics literature in 1988. Aloimonos
et al. [59] argued that interpreting a single, static image
from a passive observer presents an ill-posed problem that
is nonlinear, lacks regularization, and yields an unstable
solution that is susceptible to noisy inputs. By implement-
ing an “active vision” framework for five computer vision
tasks, the authors experimentally demonstrate that an active
observer that collects multiple views of the scene can define
a well-posed, linear problem with a unique, stable solution
that requires little or no assumptions. Aloimonos’s active
vision fundamentally differs from MANIP due to its lack
of physical interaction with the environment.

Ruzena Bajcsy pioneered research using vision, touch,
and active perception to improve robot perception. In 1984,
Goldberg and Bajcsy [60] presented active perception using
a robot to actively move a touch sensor to trace object
contours. In 1985, Bajcsy explored the differences between
active and passive perception [61], and in 1987 Bajcsy
et al. [62] consider object exploration through visual and
haptic sensing. In 1988, Bajcsy defined active perception
as a control strategy for intelligent data acquisition using
touch and visual sensing [63]. While active perception aims
to explore the environment through multiple modalities,
“interactive perception” differs in that it physically modifies
the environment to facilitate perception [4].

III. MANIP SYSTEM ARCHITECTURE

See the caption to Figure 1 for a summary of the MANIP
framework.

The system confidence estimator h produces a vector σt.
This includes a measure of confidence in the state estimate at
time t, and also some measure of state viability, such as cost-
to-go or reward as in RL. Even if state estimation confidence
is high, it is important for the meta-policy to identify if the
estimated state is unsafe, unfamiliar (out of distribution), or
likely to lead to task failure.

The meta-policy can be a procedural or learned function
that takes as input the current state and confidence vector and
outputs one of the available modular sub-policies. These sub-
policies can be either 1) procedural or learned task policies
which perform actions to advance progress toward task com-
pletion, or 2) procedural or learned interactive perception



policies which perform actions that aim to improve system
perception confidence. These sub-policies should be modular
with well-defined trigger conditions based on the current
system state and confidence vector so that the meta-policy
can operate effectively. If trigger conditions are not disjoint,
a meta-policy may select a sub-policy non-deterministically.

We have found that organizing sub-policies in this way
can facilitate building hybrid systems that include a mix
of procedural and learned policies. This organization can
also facilitate system fine-tuning as failure modes are en-
countered, allowing explicit insertion of sub-polices such
as interactive perception that can anticipate and correct for
failure modes.

At each timestep t, MANIP executes action at from the
current sub-policy, moving to timestep t+1. The meta-policy
terminates the cycle either when success conditions are met,
or returns a failure signal, or the system outputs a signal
requesting human input when a failure condition is met, a
timeout is reached, or the current state and confidence vector
do not meet any of the subpolicy trigger conditions.

We think of the meta-policy as Markovian as it primarily
uses the current system state and confidence vector values. It
also includes a cycle counter to check the timeout condition.
But the meta-policy can include a buffer of prior system
states that may be useful to avoid looping or facilitate multi-
step actions during long-horizon tasks.

IV. 3 CASE STUDIES WITH PRIOR MANIPULATION
SYSTEMS

In this section we map 3 prior systems [9–11] to MANIP
to explore its utility for comparing and improving existing
systems.

A. Case Study #1: Surgical Needle Handover

As illustrated in Figure 2, Handoff of Unmodified, Surgi-
cal, Tool-Obstructed Needles (HOUSTON) is a system from
our lab that automates the handover of a surgical needle
from one end effector to another [9]. HOUSTON operates
on unmodified needles and achieves state-of-the-art success
rates on out-of-distribution needles. An interactive perception
policy is implemented with visual servoing to actively align
the needle until the system confidence estimator determines
that a sufficient number of inlier points are identified for
RANSAC circle fitting. The task policy subsequently exe-
cutes the needle handover.

One of the failure modes reported in the paper is incorrect
grasp positioning due to uncertainty in needle pose. Map-
ping the HOUSTON system into the MANIP framework
(Figure 2ii) suggests the potential for integrating additional
interactive perception policies. One example is a pre-handoff
gripper alignment verification using interactive perception.
Prior to the second grasp, the receiving gripper can slowly
move bi-directionally along the fitted-circle normal direction.
A change in the fitted circle pose at both extremes of
the gripper jaw can verify that the needle is accurately
positioned for a grasp, addressing the reported failure modes
and increasing system robustness.

Fig. 2: Two block diagrams of our Surgical Needle Handover System.

B. Case Study #2: Cable Untangling

Fig. 3: Two block diagrams of our Cable Untangling System.

As shown in Figure 3, Sliding and Grasping for Tangle
Manipulation (SGTM) 2.0 is a cable untangling system
from our lab [10]. Mapping SGTM 2.0 into the MANIP
architecture (Figure 3ii) clarifies how the knot and cable
endpoint detection systems output spatial probability distri-
butions, which are quantitative measures of uncertainty. The
task policy for untangling individual knots is identified as
the cage-pinch dilation. To adapt to varying levels of system
uncertainty, SGTM 2.0 employs two conditional variations of



cage-pinch dilation actions and Reidemeister moves, and has
a meta-policy selector that switches to a partial cage dilation
primitive to perturb the state and improve perception rather
than attempting to untangle an uncertain knot.

The MANIP architecture (Figure 3ii) suggests how SGTM
2.0 could be extended to address occasional cable grasp fail-
ures. We could add an interactive perception primitive after
each grasp that attempts to lift and move the grasped cable
slightly away from the robot base. By comparing the local
pose of the cable before and after this motion, the system
can confirm whether or not the cable has been successfully
grasped (if no change, the grasp was unsuccessful and should
be retried). This could further increase the success rate of
SGTM 2.0.

C. Case Study #3: Cable Clip Routing

Luo et al. [11] proposes a multi-stage robot manipulation
system to route a cable through a series of clips. The authors
use a multimodal perception system to switch between a
combination of hand-coded procedural and learning-based
primitives. The state estimator takes RGB images of the

Fig. 4: Two block diagrams of prior Cable Routing system.

cable, the end effector pose, and the history of executed
primitives, and extracts feature maps using neural networks.
The system confidence estimator uses an additional neural
network to transform a feature map into a probabilistic distri-
bution over 4 motion primitives. It uses a cable perturbation
primitive to push the cable out of challenging configurations.
The task policy is characterized by a pick-up cable move, a
go-next move routing the cable into the next clip, and a clip
insertion primitive learned from demonstrations.

Mapping the system into the MANIP architecture (Fig-
ure 4ii) suggests a new interactive perception primitive for
cases where the clip is not fully within view of the wrist-
mounted camera; this primitive would incrementally perturb
the wrist until the clip position in the camera image is
well within the training distribution. Another interactive

perception primitive could address failures where the gripper
does not have sufficient clearance around the cable; in such
cases, the robot could just push the cable away from the clip.

These 3 case studies suggest that MANIP can facilitate
comparing systems and that its modular structure can offer
potential extensions, in particular interactive perception prim-
itives to address failure modes. In the next section we report
a detailed case study with physical experiments comparing
the system before and after mapping it into the MANIP
architecture.

V. IMPLEMENTED CASE STUDY: CABLE TRACING

Fig. 5: HANDLOOM 2.0 in MANIP format. See Section V-C detailing the
mapping

Next, we use MANIP to develop a new version of our
recently-published cable tracing system called HANDLOOM
1.0 [12]. The resulting system, HANDLOOM 2.0, is shown
in Figure 5.

A. Problem Statement

In cable tracing, the system starts with up to 4 stan-
dard, white 6 feet-long USB-C to USB-C charging cables
randomly arranged on a black planar workspace. When
one endpoint of any cable is selected, the objective is to
successfully trace the entire cable through various distractors
to its other endpoint. All HANDLOOM variations employ
a bi-manual ABB YuMi robot and an overhead Photoneo
PhoXi Camera, 1m above the flat workspace. The algorithm
receives an input of a 773 x 1032 grayscale RGB image
(no depth) of the cables on the workspace and a random
starting endpoint. The algorithm outputs a trace from the
provided starting endpoints. For experiments, we define 4
tiers of difficulty that depend on the number of cables present
and the types of cable contacts as illustrated in Figure 7.

Our recently published HANDLOOM 1.0 algorithm [12]
uses a vision-based, autoregressive cable tracer, which is not
reliable when there is high cable density in the workspace.
It often fails on the 3 contacts types outlined in Figure 7,
i.e. crossings, tangential contact, and endpoint contact.

B. HANDLOOM 1.5

HANDLOOM 1.5 is an improved version of HAND-
LOOM 1.0, where multiple analytic trace candidates are
generated by HANDLOOM 1.0 and ensembled to choose
a cable path candidate with the most traversals. However,
HANDLOOM 1.5 still inherits the many endpoint termina-
tion failure modes of HANDLOOM 1.0, motivating us to
apply the MANIP architecture to improve it.



Fig. 6: For each tier, we show one example where HANDLOOM 2.0 outperforms HANDLOOM 1.5. The yellow star is included to represent the chosen
starting endpoint.

Fig. 7: Three potentially ambiguous configurations for cable tracing. Left:
Cable crossing. Center: Tangential contact. Right: Endpoint contact.

C. HANDLOOM 2.0

As MANIP requires an explicit system confidence estima-
tor, at each timestep we fit a 2D Gaussian to the heatmap
around for each point pi on the cable trace to obtain the
local mean and covariance, i.e. Xi ∼ N (µi,Σi). Differential
entropy, or the uncertainty and randomness of a random
variable X , is defined as

H(X) = −
∫
X
p(x) ln p(x)dx. (1)

Applying this to the multivariate Gaussian Xi ∼ N (µi,Σi)
where n = 2, we get

H(Xi) =
n

2
ln(2π) +

1

2
ln(|Σi|) +

n

2

=
1

2
ln(|Σi|) + (ln(2π) + 1). (2)

So for every heatmap hi, uncertainty is measured by the
determinant of Σi. Higher |Σi| corresponds to higher un-
certainty. Next, for each point pi, we use the same 65x65
pixel window in the grayscale RGB image and calculate the
normalized cable density ρi, a value proportionate to the
number of white pixels in the fixed window. Higher cable
density corresponds to lower state viability, since it is harder
to perform cable tracing in areas where there is high overlap

and proximity between cables. We calculate an uncertainty
quantification U along the trace using a sliding a window
filter composed of a linear combination of the differential
entropy and density, that is

U(pt) = ΣT−1
i=0 αi|Σi+t|+ΣT−1

i=0 βiρi+t. (3)

A parameter sweep suggests that window size T = 3 and
coefficients α0 = α2 = 0.15, α1 = 0.20, and β = 0.16̄
perform best.

Additionally, we add to the system confidence vector two
more values: 1) the length of the current trace in pixel space
l, which is a reward measure, and 2) a nominal endpoint
”indicator” value: i ∈ {EN, RE, ED, UN} (endpoint, retrace,
edge, or undertermined).

Again, the state confidence vector includes 4 values: 1)
state confidence from differential entropy e, 2) state viability
from cable density d, 3) trace length l, and 5) endpoint
indicator i).

The meta-policy uses the 4 values in σt to compute which
module to activate. As the MANIP architecture makes sub-
policies explicit, we create 4 new sub-policies. Three of
these facilitate interactive perception: Trace Uncertainty dis-
ambiGuation (TUG), Retrace Uncertainty disambiGuation
(RUG), and Move Endpoint into Field-of-view (MEF).

When i = UN – the most common case – the TUG inter-
active perception policy is activated to find pc = Uargmax,
the point along the trace that has the highest combined
differential entropy and cable density, i.e. the highest state
uncertainty and lowest state viability. One gripper then
perturbs the cable there while the other gripper holds down
the starting endpoint.

If the endpoint trace point indicator suggests the final
endpoint is at the edge of the field-of-view (i = ED),



then one robot gripper picks that ending trace point and
moves that portion of the cable back into the camera field-of-
view, while the other robot gripper holds down the starting
endpoint. If i = RE, then the RUG policy is deployed. For
RUG, one robot gripper perturbs the area where the retrace
occurred, while the other gripper pins down the starting
endpoint for the trace.

We define a new subpolicy to confirm task completion,
called Cable Endpoint Verification (CEV). When the esti-
mated cable trace length is the expected length of 6-feet
and i = EN , then the meta-policy selector chooses the task
policy, CEV, which uses one robot gripper to hold down the
initial cable point, and the other gripper to slightly perturb the
current endpoint. Then, the state estimator (HANDLOOM
1.5) is run again and if the trace length stays the same,
HANDLOOM 2.0 terminates successfully; otherwise, the
meta-policy selects one of the 3 interactive perception poli-
cies which perturb the cable to faciliate perception. For ex-
ample, TUG computes a linear motion of the closed gripper
that sweeps between tangentially aligned cable segments in
an effort to separate them.

D. Results from 240 Physical Experiments

We compare HANDLOOM 2.0 with HANDLOOM 1.5
using cables tangled into 4 tiers of difficulty. To evaluate
performance, we compute the percentage of the cable (with
given endpoint) that is correctly traced as measured in pixel
space. We set the maximum time horizon to T = 10
iterations.

The tiers of difficulty are based on number of cables
and types of contact as shown in Figure 7. For all tiers
of difficulty, we put no upper bounds on crossings and
endpoint contacts. Tier 1 consists of 2 cables with at most
2 tangential contacts. Tier 2 is also 2 cables, but it has
more than 2 tangential contacts. Tier 3 is any configuration
with 3 cables without an upper bound on tangential contacts.
Tier 4 includes 4 cables with no upper bound on tangential
contacts. We do our best to randomize initial cable states
by dropping cables from above the workspace and using
rejection sampling. The robot operates 30 times using each
algorithm on each tier of difficulty, constituting a total of
240 trials.

TABLE I: Results from 240 physical cable tracing experiments compar-
ing HANDLOOM 1.5 with HANDLOOM 2.0 (developed with MANIP)
Values are percent of the cable length that is accurately traced.

Method Tier 1 Tier 2 Tier 3 Tier 4
HANDLOOM 1.5 62.4% 45.8% 44.8% 60.0%
HANDLOOM 2.0 89.5% 86.2% 60.0% 68.2%

% Improvement 43.4% 88.2% 33.9% 13.7%

Results in Table I suggests that HANDLOOM 2.0 devel-
oped with MANIP increased system performance across all
tiers of difficulty.

VI. LIMITATIONS AND FUTURE WORK

In the extended case study with cable tracing, we found
that HANDLOOM 2.0 struggles to accurately recognize

cable endpoint contacts (see Figure 7), so in future work
we will use MANIP to develop HANDLOOM 3.0 with
additional interactive perception primitives that can resolve
these ambiguities.

We fully acknowledge that MANIP requires human engi-
neering to customize system design and tune parameters for
different tasks, and that all systems are prone to failure when
assumptions are violated. We are applying MANIP to other
prior and new robot manipulation systems in our lab and we
welcome others to consider using it. For convenience, the
system block diagram in different formats is available on
the project website.
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