
MANIP: A Modular Architecture for Integrating
Interactive Perception for Robot Manipulation

Justin Yu*1, Tara Sadjadpour*1, Abby O’Neill1, Mehdi Khfifi1, Lawrence Yunliang Chen1,
Richard Cheng2, Muhammad Zubair Irshad2, Ashwin Balakrishna2, Thomas Kollar2, Ken Goldberg1

Fig. 1: MANIP: General MANIP System Architecture At discrete timestep t, system sensors measure true system state xt yielding observation yt,
which is processed by the perception model g to estimate state x̂t. The system confidence estimator evaluates both state observability and state viability
(see Section III), represented by vector σt. Using x̂t and σt, a meta-policy switches between subpolicies for task completion or interactive perception to
generate action at to advance to state xt+1. This cycle continues until the meta-policy terminates with task completion or an error report.

Abstract— We propose a modular systems architecture, MA-
NIP, that can facilitate the design and development of robot
manipulation systems by systematically combining learned sub-
policies with well-established procedural algorithmic primitives
such as Inverse Kinematics, Kalman Filters, RANSAC outlier
rejection, PID modules, etc. (aka ”Good Old Fashioned En-
gineering (GOFE)”). The MANIP architecture grew from our
lab’s experience developing robot systems for folding clothes,
routing cables, and untangling knots. To address failure modes,
MANIP can facilitate inclusion of ”interactive perception” sub-
policies that execute robot actions to modify system state to
bring the system into alignment with the training distribution
and / or to disambiguate system state when system state
confidence is low. We demonstrate how MANIP can be applied
with 3 case studies and then describe a detailed case study
in cable tracing with experiments that suggest MANIP can
improve performance by up to 88%. Code and details are
available at: https://berkeleyautomation.github.io/MANIP/

I. INTRODUCTION

Many are excited about the potential for generalist robot
policies, monolithic end-to-end neural networks that map
sensory observations to low-level control outputs, to solve
a range of robot control problems [1, 2]. However at least in
the near term, it may be helpful to combine learned models
with well-established procedural algorithms, aka. ”Good Old
Fashioned Engineering (GOFE)”) to increase generality and
reliability [3].

∗ Equal contribution
1The AUTOLab at UC Berkeley (automation.berkeley.edu).
2Toyota Research Institute, Los Altos, CA.

Interactive Perception, where robots change the environ-
ment to improve observability, has potential to increase the
generality and reliability of robot systems, as Bohg, et al. [4]
and others have noted [5–8]. Interactive Perception [4] builds
on Active Perception by adding physical interactions with the
environment, such as moving an object or occlusion. This
paper provides an architecture for incorporating interactive
perception into robot systems.

We propose MANIP, a Modular Architecture for
iNtegrating Interactive Perception into robot systems. MA-
NIP integrates classical procedural algorithms with learned
policies to address different stages of the task using a meta-
policy that determines which policy or primitive to activate
based on a general vector of confidence. With MANIP, the
system objective can switch between minimizing uncertainty
with interactive perception policies and maximizing reward
with task policies.

To develop MANIP, we began with an initial flowchart
similar to Figure 1 and applied it to two prior systems
our lab developed for surgical needle handover [9] and
cable untangling [10], and one prior system developed by
another lab for cable routing [11]. We iterated, adjusting the
architecture to make it compatible with each system.

In our experience, we have found MANIP to be useful as a
diagrammatic structure to compare system architectures and
to identify opportunities where interactive perception primi-
tives (procedural or learned) can be added to existing systems
to address failure modes and increase system performance.

This paper makes 3 contributions:

https://berkeleyautomation.github.io/MANIP/

1) MANIP, a modular architecture for integrating interac-
tive perception primitives with learned robot manipula-
tion policies.

2) Case studies mapping 3 prior systems [9–11] to MANIP
to illustrate how MANIP may be helpful for comparing
and extending existing systems.

3) A detailed case study with physical experiments demon-
strating how MANIP can be used to significantly im-
prove the performance of our existing cable tracing
system [12].

II. RELATED WORK

A. Robot Systems Architectures

There is a rich history of research on robot systems ar-
chitectures [13–18]. The Shakey robot [19] in the late 1960s
decomposed its architecture into 3 functional components:
sensing, planning, and executing [20]. Many systems use
a variant of the sense-plan-act (SPA) structure [16] or the
subsumption architecture [21], which is built hierarchically
from layers of interacting finite-state machines called behav-
iors. Examples include Arkin’s motor-control schemas [22]
and the autonomous robot architecture (AuRA) [23, 24].
One of the most common architectural designs is the three-
tier structure, comprising hierarchical connections between
planning, executive, and behavioral control levels [18]. Ex-
amples include the reactive action packages (RAPs) sys-
tem [25], ATLANTIS [26], LAAS [27], Syndicate [28],
and NASREM [29]. In general, the decomposition into
hierarchical modular subsystems can be along the temporal
dimension [30] or based on task abstraction [21, 31–33].
For more details and examples, see the excellent review by
Kortenkamp et al. [16].

Recent advances in machine learning and deep learning
attempt to replace procedural policies with learned models.
For example, the perception model can be a learned Convo-
lutional Neural Network (CNN) [34] or Vision Transformer
(ViT) [35], the motion planning optimization solver can be
warm-started by a neural network [36], and the low-level
controller can be a trained RL policy [37] or trained from
behavioral cloning [38].

System dynamics for many tasks can be framed as a
partially observable Markov decision process (POMDP), but
exact solutions to this problem are intractable since they
operate in the continuous state space and may require a full
history of actions and observations. One option to finding
approximate POMDP solutions is reinforcement learning
(RL) which balances exploration and exploitation. Yet it
remains a challenge for RL to learn long-horizon tasks with
large state-action spaces [39, 40] and sparse rewards [41, 42].
MANIP does not assume probabilistic state and transition
dynamics, nor an explicit reward or value function, nor a
discounted time horizon. MANIP’s state estimator and sys-
tem confidence estimator are generalizations of the POMDP
belief state estimator, as they may be functions of state
history or other intrinsic or extrinsic variables. MANIP can
be trivially extended to represent non-Markovian processes,
whereby state and system history can be integrated.

In addition to recent and ongoing efforts to develop
Large end-to-end Vision, Language, Action (VLA) models to
robotics [1, 2], large language and vision models (LLMs and
VLMs) are being used for end-to-end learned perception [43,
44], planning [45–47], and action modules [48, 49]. End-
to-end models have shown promise for sub-problems in
navigation [50], locomotion [51, 52], and manipulation [53,
54]. Yet results are mixed [55] and it seems likely that for the
near future, Good Old Fashioned Engineering (GOFE) will
continue to provide useful modular primitives for tasks such
as cable untangling [10] and routing [11], bagging [56], assis-
tive cooking [57], and navigation for extended periods [58].

B. Active Perception

Active perception was introduced concurrently in the
computer vision and robotics literature in 1988. Aloimonos
et al. [59] argued that interpreting a single, static image
from a passive observer presents an ill-posed problem that
is nonlinear, lacks regularization, and yields an unstable
solution that is susceptible to noisy inputs. By implement-
ing an “active vision” framework for five computer vision
tasks, the authors experimentally demonstrate that an active
observer that collects multiple views of the scene can define
a well-posed, linear problem with a unique, stable solution
that requires little or no assumptions. Aloimonos’s active
vision fundamentally differs from MANIP due to its lack
of physical interaction with the environment.

Ruzena Bajcsy pioneered research using vision, touch,
and active perception to improve robot perception. In 1984,
Goldberg and Bajcsy [60] presented active perception using
a robot to actively move a touch sensor to trace object
contours. In 1985, Bajcsy explored the differences between
active and passive perception [61], and in 1987 Bajcsy
et al. [62] consider object exploration through visual and
haptic sensing. In 1988, Bajcsy defined active perception
as a control strategy for intelligent data acquisition using
touch and visual sensing [63]. While active perception aims
to explore the environment through multiple modalities,
“interactive perception” differs in that it physically modifies
the environment to facilitate perception [4].

III. MANIP SYSTEM ARCHITECTURE

See the caption to Figure 1 for a summary of the MANIP
framework.

The system confidence estimator h produces a vector σt.
This includes a measure of confidence in the state estimate at
time t, and also some measure of state viability, such as cost-
to-go or reward as in RL. Even if state estimation confidence
is high, it is important for the meta-policy to identify if the
estimated state is unsafe, unfamiliar (out of distribution), or
likely to lead to task failure.

The meta-policy can be a procedural or learned function
that takes as input the current state and confidence vector and
outputs one of the available modular sub-policies. These sub-
policies can be either 1) procedural or learned task policies
which perform actions to advance progress toward task com-
pletion, or 2) procedural or learned interactive perception

policies which perform actions that aim to improve system
perception confidence. These sub-policies should be modular
with well-defined trigger conditions based on the current
system state and confidence vector so that the meta-policy
can operate effectively. If trigger conditions are not disjoint,
a meta-policy may select a sub-policy non-deterministically.

We have found that organizing sub-policies in this way
can facilitate building hybrid systems that include a mix
of procedural and learned policies. This organization can
also facilitate system fine-tuning as failure modes are en-
countered, allowing explicit insertion of sub-polices such
as interactive perception that can anticipate and correct for
failure modes.

At each timestep t, MANIP executes action at from the
current sub-policy, moving to timestep t+1. The meta-policy
terminates the cycle either when success conditions are met,
or returns a failure signal, or the system outputs a signal
requesting human input when a failure condition is met, a
timeout is reached, or the current state and confidence vector
do not meet any of the subpolicy trigger conditions.

We think of the meta-policy as Markovian as it primarily
uses the current system state and confidence vector values. It
also includes a cycle counter to check the timeout condition.
But the meta-policy can include a buffer of prior system
states that may be useful to avoid looping or facilitate multi-
step actions during long-horizon tasks.

IV. 3 CASE STUDIES WITH PRIOR MANIPULATION
SYSTEMS

In this section we map 3 prior systems [9–11] to MANIP
to explore its utility for comparing and improving existing
systems.

A. Case Study #1: Surgical Needle Handover

As illustrated in Figure 2, Handoff of Unmodified, Surgi-
cal, Tool-Obstructed Needles (HOUSTON) is a system from
our lab that automates the handover of a surgical needle
from one end effector to another [9]. HOUSTON operates
on unmodified needles and achieves state-of-the-art success
rates on out-of-distribution needles. An interactive perception
policy is implemented with visual servoing to actively align
the needle until the system confidence estimator determines
that a sufficient number of inlier points are identified for
RANSAC circle fitting. The task policy subsequently exe-
cutes the needle handover.

One of the failure modes reported in the paper is incorrect
grasp positioning due to uncertainty in needle pose. Map-
ping the HOUSTON system into the MANIP framework
(Figure 2ii) suggests the potential for integrating additional
interactive perception policies. One example is a pre-handoff
gripper alignment verification using interactive perception.
Prior to the second grasp, the receiving gripper can slowly
move bi-directionally along the fitted-circle normal direction.
A change in the fitted circle pose at both extremes of
the gripper jaw can verify that the needle is accurately
positioned for a grasp, addressing the reported failure modes
and increasing system robustness.

Fig. 2: Two block diagrams of our Surgical Needle Handover System.

B. Case Study #2: Cable Untangling

Fig. 3: Two block diagrams of our Cable Untangling System.

As shown in Figure 3, Sliding and Grasping for Tangle
Manipulation (SGTM) 2.0 is a cable untangling system
from our lab [10]. Mapping SGTM 2.0 into the MANIP
architecture (Figure 3ii) clarifies how the knot and cable
endpoint detection systems output spatial probability distri-
butions, which are quantitative measures of uncertainty. The
task policy for untangling individual knots is identified as
the cage-pinch dilation. To adapt to varying levels of system
uncertainty, SGTM 2.0 employs two conditional variations of

cage-pinch dilation actions and Reidemeister moves, and has
a meta-policy selector that switches to a partial cage dilation
primitive to perturb the state and improve perception rather
than attempting to untangle an uncertain knot.

The MANIP architecture (Figure 3ii) suggests how SGTM
2.0 could be extended to address occasional cable grasp fail-
ures. We could add an interactive perception primitive after
each grasp that attempts to lift and move the grasped cable
slightly away from the robot base. By comparing the local
pose of the cable before and after this motion, the system
can confirm whether or not the cable has been successfully
grasped (if no change, the grasp was unsuccessful and should
be retried). This could further increase the success rate of
SGTM 2.0.

C. Case Study #3: Cable Clip Routing

Luo et al. [11] proposes a multi-stage robot manipulation
system to route a cable through a series of clips. The authors
use a multimodal perception system to switch between a
combination of hand-coded procedural and learning-based
primitives. The state estimator takes RGB images of the

Fig. 4: Two block diagrams of prior Cable Routing system.

cable, the end effector pose, and the history of executed
primitives, and extracts feature maps using neural networks.
The system confidence estimator uses an additional neural
network to transform a feature map into a probabilistic distri-
bution over 4 motion primitives. It uses a cable perturbation
primitive to push the cable out of challenging configurations.
The task policy is characterized by a pick-up cable move, a
go-next move routing the cable into the next clip, and a clip
insertion primitive learned from demonstrations.

Mapping the system into the MANIP architecture (Fig-
ure 4ii) suggests a new interactive perception primitive for
cases where the clip is not fully within view of the wrist-
mounted camera; this primitive would incrementally perturb
the wrist until the clip position in the camera image is
well within the training distribution. Another interactive

perception primitive could address failures where the gripper
does not have sufficient clearance around the cable; in such
cases, the robot could just push the cable away from the clip.

These 3 case studies suggest that MANIP can facilitate
comparing systems and that its modular structure can offer
potential extensions, in particular interactive perception prim-
itives to address failure modes. In the next section we report
a detailed case study with physical experiments comparing
the system before and after mapping it into the MANIP
architecture.

V. IMPLEMENTED CASE STUDY: CABLE TRACING

Fig. 5: HANDLOOM 2.0 in MANIP format. See Section V-C detailing the
mapping

Next, we use MANIP to develop a new version of our
recently-published cable tracing system called HANDLOOM
1.0 [12]. The resulting system, HANDLOOM 2.0, is shown
in Figure 5.

A. Problem Statement

In cable tracing, the system starts with up to 4 stan-
dard, white 6 feet-long USB-C to USB-C charging cables
randomly arranged on a black planar workspace. When
one endpoint of any cable is selected, the objective is to
successfully trace the entire cable through various distractors
to its other endpoint. All HANDLOOM variations employ
a bi-manual ABB YuMi robot and an overhead Photoneo
PhoXi Camera, 1m above the flat workspace. The algorithm
receives an input of a 773 x 1032 grayscale RGB image
(no depth) of the cables on the workspace and a random
starting endpoint. The algorithm outputs a trace from the
provided starting endpoints. For experiments, we define 4
tiers of difficulty that depend on the number of cables present
and the types of cable contacts as illustrated in Figure 7.

Our recently published HANDLOOM 1.0 algorithm [12]
uses a vision-based, autoregressive cable tracer, which is not
reliable when there is high cable density in the workspace.
It often fails on the 3 contacts types outlined in Figure 7,
i.e. crossings, tangential contact, and endpoint contact.

B. HANDLOOM 1.5

HANDLOOM 1.5 is an improved version of HAND-
LOOM 1.0, where multiple analytic trace candidates are
generated by HANDLOOM 1.0 and ensembled to choose
a cable path candidate with the most traversals. However,
HANDLOOM 1.5 still inherits the many endpoint termina-
tion failure modes of HANDLOOM 1.0, motivating us to
apply the MANIP architecture to improve it.

Fig. 6: For each tier, we show one example where HANDLOOM 2.0 outperforms HANDLOOM 1.5. The yellow star is included to represent the chosen
starting endpoint.

Fig. 7: Three potentially ambiguous configurations for cable tracing. Left:
Cable crossing. Center: Tangential contact. Right: Endpoint contact.

C. HANDLOOM 2.0

As MANIP requires an explicit system confidence estima-
tor, at each timestep we fit a 2D Gaussian to the heatmap
around for each point pi on the cable trace to obtain the
local mean and covariance, i.e. Xi ∼ N (µi,Σi). Differential
entropy, or the uncertainty and randomness of a random
variable X , is defined as

H(X) = −
∫
X
p(x) ln p(x)dx. (1)

Applying this to the multivariate Gaussian Xi ∼ N (µi,Σi)
where n = 2, we get

H(Xi) =
n

2
ln(2π) +

1

2
ln(|Σi|) +

n

2

=
1

2
ln(|Σi|) + (ln(2π) + 1). (2)

So for every heatmap hi, uncertainty is measured by the
determinant of Σi. Higher |Σi| corresponds to higher un-
certainty. Next, for each point pi, we use the same 65x65
pixel window in the grayscale RGB image and calculate the
normalized cable density ρi, a value proportionate to the
number of white pixels in the fixed window. Higher cable
density corresponds to lower state viability, since it is harder
to perform cable tracing in areas where there is high overlap

and proximity between cables. We calculate an uncertainty
quantification U along the trace using a sliding a window
filter composed of a linear combination of the differential
entropy and density, that is

U(pt) = ΣT−1
i=0 αi|Σi+t|+ΣT−1

i=0 βiρi+t. (3)

A parameter sweep suggests that window size T = 3 and
coefficients α0 = α2 = 0.15, α1 = 0.20, and β = 0.16̄
perform best.

Additionally, we add to the system confidence vector two
more values: 1) the length of the current trace in pixel space
l, which is a reward measure, and 2) a nominal endpoint
”indicator” value: i ∈ {EN, RE, ED, UN} (endpoint, retrace,
edge, or undertermined).

Again, the state confidence vector includes 4 values: 1)
state confidence from differential entropy e, 2) state viability
from cable density d, 3) trace length l, and 5) endpoint
indicator i).

The meta-policy uses the 4 values in σt to compute which
module to activate. As the MANIP architecture makes sub-
policies explicit, we create 4 new sub-policies. Three of
these facilitate interactive perception: Trace Uncertainty dis-
ambiGuation (TUG), Retrace Uncertainty disambiGuation
(RUG), and Move Endpoint into Field-of-view (MEF).

When i = UN – the most common case – the TUG inter-
active perception policy is activated to find pc = Uargmax,
the point along the trace that has the highest combined
differential entropy and cable density, i.e. the highest state
uncertainty and lowest state viability. One gripper then
perturbs the cable there while the other gripper holds down
the starting endpoint.

If the endpoint trace point indicator suggests the final
endpoint is at the edge of the field-of-view (i = ED),

then one robot gripper picks that ending trace point and
moves that portion of the cable back into the camera field-of-
view, while the other robot gripper holds down the starting
endpoint. If i = RE, then the RUG policy is deployed. For
RUG, one robot gripper perturbs the area where the retrace
occurred, while the other gripper pins down the starting
endpoint for the trace.

We define a new subpolicy to confirm task completion,
called Cable Endpoint Verification (CEV). When the esti-
mated cable trace length is the expected length of 6-feet
and i = EN , then the meta-policy selector chooses the task
policy, CEV, which uses one robot gripper to hold down the
initial cable point, and the other gripper to slightly perturb the
current endpoint. Then, the state estimator (HANDLOOM
1.5) is run again and if the trace length stays the same,
HANDLOOM 2.0 terminates successfully; otherwise, the
meta-policy selects one of the 3 interactive perception poli-
cies which perturb the cable to faciliate perception. For ex-
ample, TUG computes a linear motion of the closed gripper
that sweeps between tangentially aligned cable segments in
an effort to separate them.

D. Results from 240 Physical Experiments

We compare HANDLOOM 2.0 with HANDLOOM 1.5
using cables tangled into 4 tiers of difficulty. To evaluate
performance, we compute the percentage of the cable (with
given endpoint) that is correctly traced as measured in pixel
space. We set the maximum time horizon to T = 10
iterations.

The tiers of difficulty are based on number of cables
and types of contact as shown in Figure 7. For all tiers
of difficulty, we put no upper bounds on crossings and
endpoint contacts. Tier 1 consists of 2 cables with at most
2 tangential contacts. Tier 2 is also 2 cables, but it has
more than 2 tangential contacts. Tier 3 is any configuration
with 3 cables without an upper bound on tangential contacts.
Tier 4 includes 4 cables with no upper bound on tangential
contacts. We do our best to randomize initial cable states
by dropping cables from above the workspace and using
rejection sampling. The robot operates 30 times using each
algorithm on each tier of difficulty, constituting a total of
240 trials.

TABLE I: Results from 240 physical cable tracing experiments compar-
ing HANDLOOM 1.5 with HANDLOOM 2.0 (developed with MANIP)
Values are percent of the cable length that is accurately traced.

Method Tier 1 Tier 2 Tier 3 Tier 4
HANDLOOM 1.5 62.4% 45.8% 44.8% 60.0%
HANDLOOM 2.0 89.5% 86.2% 60.0% 68.2%

% Improvement 43.4% 88.2% 33.9% 13.7%

Results in Table I suggests that HANDLOOM 2.0 devel-
oped with MANIP increased system performance across all
tiers of difficulty.

VI. LIMITATIONS AND FUTURE WORK

In the extended case study with cable tracing, we found
that HANDLOOM 2.0 struggles to accurately recognize

cable endpoint contacts (see Figure 7), so in future work
we will use MANIP to develop HANDLOOM 3.0 with
additional interactive perception primitives that can resolve
these ambiguities.

We fully acknowledge that MANIP requires human engi-
neering to customize system design and tune parameters for
different tasks, and that all systems are prone to failure when
assumptions are violated. We are applying MANIP to other
prior and new robot manipulation systems in our lab and we
welcome others to consider using it. For convenience, the
system block diagram in different formats is available on
the project website.

ACKNOWLEDGEMENT

This research was supported in part by a donation from
the Toyota Research Institute.

REFERENCES

[1] O. X.-E. Collaboration et al., Open X-Embodiment: Robotic learn-
ing datasets and RT-X models, 2024.

[2] Octo Model Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O.
Mees, S. Dasari, J. Hejna, C. Xu, J. Luo, T. Kreiman, Y. Tan, D.
Sadigh, C. Finn, and S. Levine, Octo: An open-source generalist
robot policy, https://octo-models.github.io, 2023.

[3] K. Goldberg, Is data all you need? large robot action models and
good old fashioned engineering, https://bit.ly/Is_Data_
All_You_Need, 2024.

[4] J. Bohg, K. Hausman, B. Sankaran, O. Brock, D. Kragic, S. Schaal,
and G. S. Sukhatme, “Interactive perception: Leveraging action
in perception and perception in action,” IEEE Transactions on
Robotics, vol. 33, no. 6, pp. 1273–1291, 2017.

[5] T. Novkovic, R. Pautrat, F. Furrer, M. Breyer, R. Siegwart, and
J. Nieto, “Object finding in cluttered scenes using interactive
perception,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA), IEEE, 2020, pp. 8338–8344.

[6] R. M. Martin and O. Brock, “Online interactive perception of
articulated objects with multi-level recursive estimation based on
task-specific priors,” in 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IEEE, 2014, pp. 2494–2501.

[7] D. Katz and O. Brock, “Manipulating articulated objects with
interactive perception,” in 2008 IEEE International Conference on
Robotics and Automation, IEEE, 2008, pp. 272–277.

[8] D. Katz, A. Orthey, and O. Brock, “Interactive perception of artic-
ulated objects,” in Experimental Robotics: The 12th International
Symposium on Experimental Robotics, Springer, 2014, pp. 301–315.

[9] A. Wilcox, J. Kerr, B. Thananjeyan, J. Ichnowski, M. Hwang, S.
Paradis, D. Fer, and K. Goldberg, “Learning to localize, grasp, and
hand over unmodified surgical needles,” in 2022 ICRA, IEEE, 2022.

[10] K. Shivakumar, V. Viswanath, A. Gu, Y. Avigal, J. Kerr, J.
Ichnowski, R. Cheng, T. Kollar, and K. Goldberg, “Sgtm 2.0:
Autonomously untangling long cables using interactive perception,”
in 2023 ICRA, IEEE, 2023.

[11] J. Luo, C. Xu, X. Geng, G. Feng, K. Fang, L. Tan, S. Schaal, and
S. Levine, “Multi-stage cable routing through hierarchical imitation
learning,” IEEE Transactions on Robotics, 2024.

[12] V. Viswanath, K. Shivakumar, M. Parulekar, J. Ajmera, J. Kerr,
J. Ichnowski, R. Cheng, T. Kollar, and K. Goldberg, “Handloom:
Learned tracing of one-dimensional objects for inspection and
manipulation,” in CoRL, PMLR, 2023.

[13] T. L. Dean and M. P. Wellman, Planning and control. Morgan
Kaufmann Publishers Inc., 1991.

[14] T. L. Dean, Robot architectures. [Online]. Available: https://
cs.brown.edu/people/tdean/courses/cs148/02/
architectures.html.

[15] F. G. Martin, Robotic explorations: A hands-on introduction to
engineering. Prentice Hall PTR, 2000.

[16] D. Kortenkamp, R. Simmons, and D. Brugali, “Robotic systems
architectures and programming,” in Springer Handbook of Robotics,
B. Siciliano and O. Khatib, Eds. Cham: Springer International
Publishing, 2016, pp. 283–306. [Online]. Available: https://
doi.org/10.1007/978-3-319-32552-1_12.

https://octo-models.github.io
https://bit.ly/Is_Data_All_You_Need
https://bit.ly/Is_Data_All_You_Need
https://cs.brown.edu/people/tdean/courses/cs148/02/architectures.html
https://cs.brown.edu/people/tdean/courses/cs148/02/architectures.html
https://cs.brown.edu/people/tdean/courses/cs148/02/architectures.html
https://doi.org/10.1007/978-3-319-32552-1_12
https://doi.org/10.1007/978-3-319-32552-1_12

[17] R. R. Murphy, Introduction to AI robotics. MIT press, 2019.
[18] J. Bohg, M. Pavone, and D. Sadigh, 14 robot system architectures,

Feb. 2021. [Online]. Available: https://web.stanford.
edu/class/cs237b/pdfs/lecture/lecture_14.pdf.

[19] N. J. Nilsson, Artificial intelligence: a new synthesis. Morgan
Kaufmann, 1998.

[20] N. J. Nilsson, Principles of artificial intelligence. Springer Science
& Business Media, 1982.

[21] R. Brooks, “A robust layered control system for a mobile robot,”
IEEE journal on robotics and automation, vol. 2, no. 1, 1986.

[22] R. C. Arkin, “Motor schema—based mobile robot navigation,” The
International journal of robotics research, vol. 8, no. 4, 1989.

[23] R. C. Arkin, “Integrating behavioral, perceptual, and world knowl-
edge in reactive navigation,” Robotics and autonomous systems,
vol. 6, no. 1-2, pp. 105–122, 1990.

[24] R. C. Arkin and T. Balch, “Aura: Principles and practice in review,”
Journal of Experimental & Theoretical Artificial Intelligence, vol. 9,
no. 2-3, 1997.

[25] R. J. Firby, Adaptive execution in complex dynamic worlds. Yale
University, 1989.

[26] E. Gat, “Integrating planning and reacting in a heterogeneous
asynchronous architecture for controlling real-world mobile robots,”
in AAAi, vol. 1992, 1992, pp. 809–815.

[27] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand, “An
architecture for autonomy,” The International Journal of Robotics
Research, vol. 17, no. 4, pp. 315–337, 1998.

[28] B. Sellner, F. W. Heger, L. M. Hiatt, R. Simmons, and S. Singh,
“Coordinated multiagent teams and sliding autonomy for large-scale
assembly,” Proceedings of the IEEE, vol. 94, no. 7, 2006.

[29] J. S. Albus, H. McCain, and R. Lumia, “Nasa/nbs standard reference
model for telerobot control system architecture (nasrem),” 1989.

[30] J. S. Albus, “Rcs: A reference model architecture for intelli-
gent systems,” in Working Notes: AAAI Spring Symposium on
Lessons Learned for Implemented Software Architectures for Phys-
ical Agents, 1995, pp. 1–6.

[31] R. J. Firby, “An investigation into reactive planning in complex
domains.,” in AAAI, vol. 87, 1987, pp. 202–206.

[32] R. G. Simmons, “Structured control for autonomous robots,” IEEE
transactions on robotics and automation, vol. 10, no. 1, 1994.

[33] J.-J. Borrelly, É. Coste-Maniere, B. Espiau, K. Kapellos, R. Pissard-
Gibollet, D. Simon, and N. Turro, “The orccad architecture,” IJRR,
vol. 17, no. 4, 1998.

[34] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A.
Ojea, and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust
grasps with synthetic point clouds and analytic grasp metrics,” 2017.

[35] A. Dosovitskiy, “An image is worth 16x16 words: Transformers
for image recognition at scale,” arXiv preprint arXiv:2010.11929,
2020.

[36] J. Ichnowski, Y. Avigal, V. Satish, and K. Goldberg, “Deep learning
can accelerate grasp-optimized motion planning,” Science Robotics,
vol. 5, no. 48, eabd7710, 2020.

[37] K. Black, M. Nakamoto, P. Atreya, H. Walke, C. Finn, A. Kumar,
and S. Levine, “Zero-shot robotic manipulation with pretrained
image-editing diffusion models,” arXiv arXiv:2310.10639, 2023.

[38] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David,
C. Finn, C. Fu, K. Gopalakrishnan, K. Hausman, A. Herzog, D. Ho,
J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J. Ruano, K. Jeffrey,
S. Jesmonth, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H.
Lee, S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao,
K. Rao, J. Rettinghouse, D. Reyes, P. Sermanet, N. Sievers, C. Tan,
A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu, M. Yan,
and A. Zeng, “Do as i can and not as i say: Grounding language
in robotic affordances,” in 6th CoRL, 2022.

[39] A. Fayad and M. Ibrahim, “Behavior-guided actor-critic: Improving
exploration via learning policy behavior representation for deep
reinforcement learning,” arXiv preprint arXiv:2104.04424, 2021.

[40] Z. Ren, R. Guo, Y. Zhou, and J. Peng, “Learning long-term reward
redistribution via randomized return decomposition,” in Interna-
tional Conference on Learning Representations, 2021.

[41] H. Rahmandad, N. Repenning, and J. Sterman, “Effects of feedback
delay on learning,” System Dynamics Review, vol. 25, no. 4,
pp. 309–338, 2009.

[42] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel, et al., “Soft actor-critic

algorithms and applications,” arXiv preprint arXiv:1812.05905,
2018.

[43] M. Kwon, H. Hu, V. Myers, S. Karamcheti, A. Dragan, and
D. Sadigh, “Toward grounded social reasoning,” arXiv preprint
arXiv:2306.08651, 2023.

[44] S. Y. Gadre, M. Wortsman, G. Ilharco, L. Schmidt, and S. Song,
“Cows on pasture: Baselines and benchmarks for language-driven
zero-shot object navigation,” in Proceedings of the IEEE/CVF
CVPR, 2023.

[45] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D.
Fox, J. Thomason, and A. Garg, “Progprompt: Generating situated
robot task plans using large language models,” in 2023 IEEE In-
ternational Conference on Robotics and Automation (ICRA), IEEE,
2023, pp. 11 523–11 530.

[46] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng,
J. Tompson, I. Mordatch, Y. Chebotar, et al., “Inner monologue:
Embodied reasoning through planning with language models,” 2022.

[47] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language
models as zero-shot planners: Extracting actionable knowledge
for embodied agents,” in International Conference on Machine
Learning, PMLR, 2022, pp. 9118–9147.

[48] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Flo-
rence, and A. Zeng, “Code as policies: Language model programs
for embodied control,” in 2023 IEEE International Conference on
Robotics and Automation (ICRA), IEEE, 2023, pp. 9493–9500.

[49] M. G. Arenas, T. Xiao, S. Singh, V. Jain, A. Z. Ren, Q. Vuong,
J. Varley, A. Herzog, I. Leal, S. Kirmani, et al., “How to prompt
your robot: A promptbook for manipulation skills with code as
policies,” in Towards Generalist Robots: Learning Paradigms for
Scalable Skill Acquisition@ CoRL2023, 2023.

[50] G. Kahn, A. Villaflor, B. Ding, P. Abbeel, and S. Levine, “Self-
supervised deep reinforcement learning with generalized computa-
tion graphs for robot navigation,” in 2018 ICRA, IEEE, 2018.

[51] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid motor
adaptation for legged robots,” in RSS, 2021.

[52] P. Wu, A. Escontrela, D. Hafner, P. Abbeel, and K. Goldberg, “Day-
dreamer: World models for physical robot learning,” in Conference
on Robot Learning, PMLR, 2023, pp. 2226–2240.

[53] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn,
K. Gopalakrishnan, K. Hausman, A. Herzog, J. Hsu, et al., “Rt-1:
Robotics transformer for real-world control at scale,” arXiv preprint
arXiv:2212.06817, 2022.

[54] Z. Fu, T. Z. Zhao, and C. Finn, “Mobile aloha: Learning biman-
ual mobile manipulation with low-cost whole-body teleoperation,”
arXiv preprint arXiv:2401.02117, 2024.

[55] N. J. Kumar, Will scaling solve robotics? the idea of solving the
biggest robotics challenges by training large models is sparking de-
bate, https://spectrum.ieee.org/solve-robotics,
2024.

[56] L. Y. Chen, B. Shi, D. Seita, R. Cheng, T. Kollar, D. Held, and
K. Goldberg, “Autobag: Learning to open plastic bags and insert
objects,” in 2023 IEEE International Conference on Robotics and
Automation (ICRA), IEEE, 2023, pp. 3918–3925.

[57] H. Wang, K. Kedia, J. Ren, R. Abdullah, A. Bhardwaj, A. Chao,
K. Y. Chen, N. Chin, P. Dan, X. Fan, et al., “Mosaic: A mod-
ular system for assistive and interactive cooking,” arXiv preprint
arXiv:2402.18796, 2024.

[58] M. Chang, T. Gervet, M. Khanna, S. Yenamandra, D. Shah, S. Y.
Min, K. Shah, C. Paxton, S. Gupta, D. Batra, et al., “Goat: Go to
any thing,” arXiv preprint arXiv:2311.06430, 2023.

[59] J. Aloimonos, I. Weiss, and A. Bandyopadhyay, “Active vision,”
International journal of computer vision, vol. 1, pp. 333–356, 1988.

[60] K. Y. Goldberg and R. Bajcsy, “Active touch and robot perception,”
Cognition and Brain Theory, vol. 7, no. 2, pp. 199–214, 1984.

[61] R. Bajcsy, “Active perception vs. passive perception,” in Proc. of
IEEE Workshop on Computer Vision, 1985, pp. 55–62.

[62] R. Bajcsy, S. J. Lederman, and R. L. Klatzky, “Object exploration
in one and two fingered robots,” in Proceedings of the 1987 IEEE
International Conference on Robotics and Automation, Computer
Society Press, New York, vol. 3, 1987, pp. 1806–1810.

[63] R. Bajcsy, “Active perception,” Proceedings of IEEE, vol. 76, no. 8,
1988.

https://web.stanford.edu/class/cs237b/pdfs/lecture/lecture_14.pdf
https://web.stanford.edu/class/cs237b/pdfs/lecture/lecture_14.pdf
https://spectrum.ieee.org/solve-robotics

	Introduction
	Related Work
	Robot Systems Architectures
	Active Perception

	MANIP System Architecture
	3 Case Studies with Prior Manipulation Systems
	Case Study #1: Surgical Needle Handover
	Case Study #2: Cable Untangling
	Case Study #3: Cable Clip Routing

	Implemented Case Study: Cable Tracing
	Problem Statement
	HANDLOOM 1.5
	HANDLOOM 2.0
	Results from 240 Physical Experiments

	Limitations and Future Work

