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Abstract— In logistics, the ability to quickly compute and
execute pick-and-place motions from bins is critical to increas-
ing productivity. We present Bin-Optimized Motion Planning
(BOMP), a motion planning framework that plans arm motions
for a six-axis industrial robot with a long-nosed suction tool
to remove boxes from deep bins. BOMP considers robot
arm kinematics, actuation limits, the dimensions of a grasped
box, and a varying height map of a bin environment to
rapidly generate time-optimized, jerk-limited, and collision-free
trajectories. The optimization is warm-started using a deep
neural network trained offline in simulation with 25,000 scenes
and corresponding trajectories. Experiments with 96 simulated
and 15 physical environments suggest that BOMP generates
collision-free trajectories that are up to 58 % faster than baseline
sampling-based planners and up to 36 % faster than an industry-
standard Up-Over-Down algorithm, which has an extremely
low 15 % success rate in this context. BOMP also generates
jerk-limited trajectories while baselines do not. Website: https:
//sites.google.com/berkeley.edu/bomp.

I . I N T R O D U C T I O N

Robots are increasingly used for package handling and
picking in logistics settings. When transporting thousands of
packages each day, reductions in cycle time can significantly
increase robot productivity.

Particularly when working in deep bins, package handling
robots are often equipped with long-nosed suction tools (e.g.,
the “bluction” tool from Huang, et al. [1]) to enable them to
reach and manipulate packages throughout the deep bin. The
long-nosed suction tool also allows the robot wrist and arm
to remain far from obstacles and potential collisions.

In deep cluttered bins, contents can shift after each pick,
necessitating a strategy to rapidly compute pick-and-place
motions using the latest sensor data (e.g., color and depth
camera images).

Practical approaches include heuristic planning,
optimization-based motion planning, and sampling-
based motion planning. A common heuristic trajectory,
Up-Over-Down, lifts the package to clear all obstacles,
moves horizontally over obstacles to the target location,
then lowers. This is easy to implement and has negligible
compute time; however, the motion is longer than necessary
and often fails when using a long-nosed suction tool and
planning in a deep bin. In particular, vertically lifting from
the bottom to the top of the bin may be kinematically
infeasible in deep bin environments.

Optimization-based methods formulate and solve an opti-
mization problem to find the best or fastest trajectory that
avoids collisions. Sampling-based methods randomly sample
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Fig. 1: Bin-optimized motion planning. BOMP executing a time-optimized,
jerk-limited, collision-free trajectory moving a box from a bin to a drop-off
point. We use the long-nosed “bluction” tool from Huang, et al. [1] to enable
the robot to reach all parts of the deep bin, and an overhead RGBD camera
to detect obstacles and target boxes. BOMP uses an optimization-based
motion planner to compute the pick-and-place trajectory. In order to speed
up the computation, a neural network warm-starts the optimizer. It accepts
the obstacle environment, grasped box, and pick and place poses as input,
and outputs an initial trajectory.

and connect collision-free waypoints to find a path. The latter
two methods yield significantly more successful and faster
motions than Up-Over-Down, but at the expense of longer
compute times.

In prior work, we presented GOMP [2], an optimization-
based motion planner incorporating time-optimization, ob-
stacle avoidance, and grasp-optimization. GOMP computes
fast motions between pick and place poses, and the grasp-
optimization further speeds up motions by allowing pick
and place poses to be optimized while retaining the same
parallel-jaw grasp contact points. Subsequently, DJ-GOMP [3]
further reduces compute time by using a neural network
to warm-start motion planning for time-optimized and jerk-
limited trajectories. DJ-GOMP is trained over a distribution of
start and end points, assuming a fixed collision environment.
However, in warehouse settings, boxes often move between
picking actions.

To address changing obstacle environments, we propose
Bin-Optimized Motion Planning (BOMP). BOMP finds a time-
optimized trajectory while considering collisions between the
robot, a grasped box, and the obstacle environment. We
integrate BOMP into an end-to-end bin-picking pipeline,
which takes as input an RGBD image of the bin and outputs
time-optimal trajectories (Figure 1). BOMP modifies and
extends DJ-GOMP by adding the dimensions of a grasped
box and a height map of the environment as inputs to
the warm-start neural network, which enables adapting the



trajectory based on environment changes. The warm-start
neural network is trained to handle a relevant distribution
of varying collision obstacles, and predicts a trajectory to
warm-start the jerk-limited and time-optimizing trajectory
optimization. We generate a dataset of synthetic collision
environments in simulation to train the deep neural network.

This paper makes 4 contributions:
1) BOMP, a time-optimizing, jerk-limited motion planning

algorithm for picking boxes from deep bins where
boxes and obstacles are detected via a depth camera.
In experiments, BOMP generates up to 36 % faster
trajectories compared to an Up-Over-Down baseline
implemented with an optimal time-parameterizer [4],
as well as up to 58 % faster trajectories compared to
Motion Planning Templates [5] (MPT) which implements
a parallelized sampling-based motion planner (PRRT*).
BOMP successfully generates collision-free trajectories
at a 79% rate, which is similar to MPT, and significantly
higher than the Up-Over-Down baseline.

2) An end-to-end bin-picking pipeline that uses BOMP to
iteratively remove the boxes.

3) A deep neural network trained on 25,000 trajectories
generated from simulated scenes to accept a height map,
grasped box parameters, a number of trajectory segments,
and trajectory endpoints as inputs and to predict an initial
trajectory to warm-start the planning.

4) Data from 96 experiments in simulated environments
and 15 experiments in physical environments.

I I . R E L AT E D W O R K

Optimization-based motion planners such as CHOMP [6],
STOMP [7] and TrajOpt [8] compute motion plans by locally
optimizing a trajectory while penalizing collisions or placing
barrier functions on collisions [9]. Marcucci et al. [10] take
a different approach: they decompose the collision-free space
into convex regions and use convex optimization to find a
collision-free path. Natarajan, et al. [11] use implicit graph
search methods to accelerate this path-planning. GOMP [2]
builds on prior formulations by taking the mechanical limits
of the robot arm and the dynamics between waypoints into
consideration. It also optimizes over a rotational degree of
freedom about the parallel-jaw gripper contact points in each
of the pick and placement frames. DJ-GOMP [12] further
extends GOMP by minimizing jerk to reduce joint wear while
also significantly reducing computation time by warm-starting
the optimization with the output of a deep neural network.

Prior work has considered model distillation (i.e., one
model being trained on the output of one or more different
models) for seeding optimization-based motion planners
and for achieving more general-purpose models. In many
cases, training an ensemble of models improves prediction
performance, but is computationally expensive. However, the
ensemble can often be effectively distilled into a compact
network [13], [14]. DJ-GOMP used model distillation to im-
prove GOMP’s running time. While the repeated optimization
executed in GOMP could take up to several minutes to finish,
a forward pass in a compact neural network can be executed

in milliseconds. DJ-GOMP exploits this feature of neural
networks to compute similar robot trajectories faster for a
known collision environment. However, when the collision
environment is variable, and only known during runtime, the
compute time of DJ-GOMP increases by several orders of
magnitude since the neural network warm-start is no longer
valid. BOMP addresses this by learning a representation of
the collision environment and the grasped box, in addition to
robot trajectories.

Warm-starting an optimizer with a near-optimal solution
can significantly increase the solver’s performance while
greatly reducing the number of iterations required to reach
sufficient optimality [15]. In reinforcement learning, learning
a new task can be warm-started by transferring features from
old tasks the agent has already mastered [16]. Memory of
motion [17] is another method that uses an offline learned
policy to warm-start a control solver, and was shown to reduce
the computation time in locomotion problems, and to increase
the performance of nonlinear predictive controllers [18]. In
GOMP [2], compute speed is limited by the number of
iterations required to find the optimal trajectory duration.
To address this, DJ-GOMP [3] uses a neural network’s output
to warm-start the optimization with an approximation of the
optimal trajectory, ultimately resulting in faster convergence.
BOMP uses a similar approach, taking into consideration the
grasped box and the current state of the collision environment
to predict the optimal collision-free trajectory.

In recent years, researchers have explored the approach of
bypassing the optimization step and using purely learning-
based methods for motion planning. Motion planning al-
gorithms can require complex cost functions, and learning-
based methods, such as learning from demonstrations (e.g.,
[19], [20], [21]) can reduce the amount of hand engineering
required. Some learning methods (e.g., [22], [23]) focus on
increasing the sampling efficiency in sample-based methods,
for example by using non-uniform sampling [24] or rein-
forcement learning [25] To address learning in a complex
obstacle environment, Qureshi et al. [26] encode a point cloud
of the obstacles into a latent space and use a feed-forward
neural network to predict the robot configuration at the next
time step given an initial state, goal state, and the obstacles
encoding. However, learning-based methods tend to generate
less optimal trajectories and often fail to generalize to new
environments.

Although pick-and-place tasks are readily addressed by
sampling-based motion planners [27], [28], and despite the
advances made via learning-based methods, the non-negligible
convergence rate of these planners in high dimensions
prevents them from performing well in picks-per-hour.

In [29], [30], the authors use past experiences to reduce this
convergence rate. However, these methods are most effective
when the obstacle environment remains mostly the same
between executions, whereas the bin environment changes
with every pick.

To detect target boxes and the obstacle environment,
BOMP uses both a depth image and RGB segmentation
data computed using the Segment Anything Model [31].



Previous methods such as Dex-Net [32] use only point
clouds. The segmentation masks generated by SAM [31]
and successor models such as FastSAM [33] can provide
valuable information on which points belong to the same
object.

I I I . P R O B L E M S TAT E M E N T

We consider a set of n rigid rectilinear boxes selected from
a finite set of known candidate dimensions and randomly
placed into a deep-walled bin (where the bin depth is greater
than twice the largest box dimension). Given an overhead
RGBD image of the bin before each pick, we extract boxes
using a six-axis industrial robot arm with a long-nosed suction
tool. Because of the long-nosed suction tool, we assume that
the robot wrist and upper arm will never collide with the
environment. We further assume that the bin is in a fixed,
known pose and that the obstacle environment is fixed during
each robot motion (thus, we run open-loop motions). An
example problem setup is shown in Figure 1.

We consider the problem of transporting boxes from the bin
to a designated dropoff location. This problem is composed of
two subproblems that must be solved repeatedly for each box:
(1) detecting and selecting a box and a suction point; and (2)
computing a fast and collision-free trajectory to transport the
box from that grasp pose to the dropoff point.

Let q ∈ C be the complete specification of the degrees
of freedom, or configuration, of a robot, where C is the
configuration space. Let Cobs be the set of robot configurations
in which the robot is in collision with the environment, and
let Cfree = C \ Cobs be the free space. Let xt define a state
composed of qt , q̇t , and q̈t . Let τ = (x0, . . . ,xH) be a trajectory
composed of H+1 robot states, where each state is separated
in time by tstep. Let Q ⊂ C be the kinematic limits of the
robot, and let Q̇, Q̈, and

...
Q be the velocity, acceleration, and

jerk limits.
Before each pick, an overhead RGBD camera provides

an RGB image yRGB ∈ Rh×w×3 and a corresponding depth
image yD ∈ Rh×w of the bin scene.

The objective of subproblem (1) is to compute q0 from
yRGB and yD. The objective of subproblem (2) is to compute
τ such that it picks the box at q0 and moves it to the target
location, and qt ∈ Cfree ∩Q, q̇t ∈ Q̇, q̈t ∈ Q̈, and ...q t ∈

...
Q for

all t ∈ [0,H], while minimizing motion time.

I V. M E T H O D

A. Grasped Box Shape Estimation

To select a target box, we find the highest point among
the boxes in the bin, then prompt SAM [31] with the
corresponding pixel in yRGB. This method heuristically picks
less occluded boxes and empties the bin in a top-down order.

To determine the target box dimensions, we apply the
SAM output mask to yD and create a segmented pointcloud.
We fit a rectilinear box to this segmented pointcloud using
RANSAC [34], which returns up to 3 orthogonal planes.
For each plane, we compute the bounding rectangle of the
inliers. We compute potential matches by comparing the face
areas and edge lengths of the observed rectangles against

each option in the finite set of known candidate dimensions
(Section III). We aggregate results using both metrics based
on the smallest difference with any potential match. In the
case of a tie, we conservatively assume the largest possible
box size. Using this estimate of the box dimensions, we
estimate the box vertex positions.

B. Suction Grasp Selection

To determine the initial grasp configuration q0, we consider
suction points at the center of each of the visible faces of the
target box. We sort these grasp candidates by their normals’
dot product with the positive z-axis (i.e., how close they are
to a top-down grasp, as these give the robot the most freedom
to move). We then evaluate them in order, rejecting those
where no IK solution exists or where the robot would be in
collision with the environment. We terminate this search as
soon as we find a reachable collision-free grasp.

The UR5 robot used in our experiments has parallel revolute
joints, thus it generally has multiple IK solutions for a given
end-effector pose. Among these, we choose the one where
the elbow joint is concave down (like the pose in Figure 1).
This lets the robot lift boxes without having to flip its elbow
orientation.

C. Optimization Formulation

The backbone of BOMP’s trajectory generation and
optimization is derived from DJ-GOMP [3]. DJ-GOMP
formulates a nonlinear optimization problem and solves it
using sequential quadratic programming (SQP) to compute a
jerk-limited, obstacle-avoiding, and grasp-optimized motion
plan that is within the robot’s dynamic limits. In DJ-GOMP,
each SQP solve minimizes jerk (this empirically encourages
smooth trajectories) given a fixed predicted trajectory duration.
The minimum feasible duration is determined by repeated at-
tempted solves with progressively shorter trajectory horizons.

In BOMP, we extend the obstacle avoidance to the gripper,
grasped box, and more complex collision environment. We
summarize the BOMP optimization formulation here:

argmin
q[0..H]

1
2

H−1

∑
t=0

∥ ...q t∥2
2

s.t. qt ∈ Cfree (1)

q0 = qd
0 , qH = qd

H (2a), (2b)

q̇0 = q̇H = 0, q̈0 = q̈H = 0 (2c), (2d)

qt+1 = qt + q̇ttstep +
1
2 q̈tt2

step +
1
6

...q tt
3
step (3a)

q̇t+1 = q̇t + q̈ttstep +
1
2

...q tt
2
step (3b)

q̈t+1 = q̈t +
...q ttstep (3c)

qt , q̇t , q̈t ,
...q t ∈ Q, Q̇, Q̈,

...
Q (4)

H ∈ Z+ is the time horizon, or number of waypoints after
the start, tstep ∈ R+ is the time interval between waypoints,
and the constraints with subscript t are for all valid t.

Constraint (1) ensures a collision-free trajectory. Con-
straints (2a), (2b), (2c), and (2d) fix the trajectory to the
desired endpoint configurations, velocities, and accelerations.



Constraints (3a), (3b), and (3c) enforce consistent dynamics.
Constraint (4) enforces actuation limits.

Following from prior work [2], [3], the solver uses
sequential quadratic programming (SQP).

For the first SQP solve, BOMP initializes the solver with a
trajectory that is linearly interpolated in joint space between
the start and goal configurations. For each subsequent solution
(i.e., as tstep decreases), BOMP initializes the SQP solver with
the trajectory from the previous solution.

Aside from the obstacle-avoidance constraints (1), which
are non-convex, the remaining constraints are all linear in
the decision variables. Therefore, only the obstacle-avoidance
constraints must be linearized to form the problem as a locally
valid quadratic program (QP). Following from prior work, we
also soften this constraint by implementing it as an objective
with a large initial weight of 10000. This results in better
gradients for convergence when the initialization trajectory
is in collision.

Based on the success or failure of each QP solve iteration,
we adjust the trust region (in which we expect our constraint
linearization is approximately valid) and the weighting of the
collision-free soft constraint.

Breaking from prior work, we change how we reduce the
trajectory duration between SQP solves. Instead of reducing
H, we keep H fixed, and reduce tstep using an empirically
selected upper bound, and a binary search to find the lower
bound. In experiments, we fix H = 16 and use an initial
tstep = 160 ms based on a parameter sweep. We make this
change primarily to reduce computation time. The QP solve
time grows as O(H3) due to the number of optimization
variables. With the more complicated collision environment
in BOMP, optimization became prohibitively slow with the
large H values (i.e., starting from H = 60) used in prior work.

D. Collision Checking

During optimization, BOMP must repeatedly check for
collisions between the robot, grasped box, and environment.
Due to the long-nosed end-effector, the robot wrist is almost
always outside of the bin, so we accelerate our collision
checking by only checking for collisions between the long-
nosed suction tool, the grasped box, and the environment.

1) Collision Model: Using yD, we compute a height map
collision environment, then downsample it by max-pooling to
improve collision-checking efficiency. In experiments, we
downsample to 30×40. We use capsules (cylinders with
hemispherical caps) for collision checking because capsule-
capsule distance checks have a fast, closed-form solution,
roughly 10x faster than the box-box collision checking in
Flexible Collision Library [35]. Capsules tightly bound the
tall, thin height map columns at each pixel, and the tube-like
suction tool.

We approximate each height map cell with a vertically-
oriented capsule. The cylindrical portion of the capsule
extends from some “world bottom” z0, outside the max reach
of the robot, to the top of the height map column, zi j. The
set of all environment capsules is Y . We define R as the

Fig. 2: Example scenes and carved height maps. The top images show bins
with target boxes in pink. The bottom images show the capsule-modeled,
padded, and carved height maps (blue) and the robot end-effector and grasped
box capsule models (green). Note that the bin padding (solid height border)
in the height maps prevents carving through the bin wall in the second scene.

set of capsules bounding the long-nosed suction tool and the
grasped box.

2) Collision Optimization: During the optimization, we
check for collisions between the robot end effector, grasped
box, and the height map. For efficiency, we only check each
capsule in R against the height map capsules that intersect
its axis-aligned bounding box (ignoring z-coordinate). We
define d as the closest distance between capsules in Y and
R at a given time along the trajectory. This is the minimum
distance the capsule in R must move in any direction to no
longer be in collision.

In the deep bin environment, it is easiest to avoid obstacles
by going over them (intuitively, the robot cannot pass through
the walls of the bin so it must go out and over the top). We
encode this intuition into the optimization by updating d to
instead be the minimum distance the capsule in R must move
up to no longer be in collision. To still allow trajectories
around (i.e., not over) small obstacles, we make this update
only when the center axis of the closest robot-fixed capsule
intersects the closest environment capsule.

We follow CHOMP [6] in scaling d by the robot’s
linear speed to disincentivize speeding through obstacles.
We compute the robot’s linear speed at the collision point
by applying the manipulator Jacobian to the joint velocities
at that point in the trajectory. To account for collisions in
between trajectory waypoints, we densely sample d uniformly
over each trajectory segment between t and t+1 and sum the
results to get Dt . (In experiments, we sample 50x over each
segment based on a parameter sweep to find the minimum
value that does not impact on success rate.) Defining D̃t as
the closest distance using the last QP solve trajectory τ̃ , we
define the linearized collision constraints as:

D̃t +
∂Dt

∂qt
qt +

∂Dt

∂qt+1
qt+1 +

∂Dt

∂ q̇t
q̇t +

∂Dt

∂ q̇t+1
q̇t+1 > 0. (1)

We compute the above Jacobians using finite differences.
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Fig. 3: Deep learning warm-start. To create the training dataset (left), we drop boxes randomly in a simulated bin, then generate a downsampled depth
map via max pooling. We select the topmost box, compute start and goal configurations and box dimensions, and pass them to cold-started BOMP to
generate a time-optimized trajectory. We save the optimizer inputs with the resulting trajectory in a dataset. The warm-start network (right) predicts a
trajectory τ and segment duration tstep given a height map converted from a depth image, start and goal configurations, and the grasped box parameters.

To limit failures from the optimizer stopping with slight
(e.g., < 1 cm) collisions, we inflate the capsules in R (by
1 cm), and add an equivalent acceptance tolerance. Thus, if
the optimizer terminates within the tolerance, the trajectories
are verifiably collision-free.

3) Carving: To model the change of the grasped box from
being a part of the obstacle environment to being attached to
the robot end effector, we carve out (remove) any capsule in
Y in the same location as the capsule model for the grasped
box. This prevents detecting non-existent collisions at q0. To
avoid physically infeasible trajectories due to carving through
bin walls, we artificially thicken the bin walls in the height
map passed to the optimizer. Figure 2 shows carving results.

E. Deep Learning Warm-start

Even with optimized collision checking, computing fast
trajectories in complex environments requires long compute
times (roughly 30 seconds). DJ-GOMP [3] showed that a
neural network could speed up computation by outputting
an initial guess for τ and H (the trajectory and horizon) that
could warm-start the optimizer and allow it to converge faster.
We adapt this technique to reduce the computation time of
BOMP given an offline set of examples in simulation. We
train a neural network (Figure 3) that predicts the optimal
trajectory τ and the optimal segment duration tstep given
start and end poses, radius and endpoints of the grasped
capsule (in the end-effector frame), and the scene’s height
map. The neural network passes the height map through
two convolutional layers to produce an embedding, which
is concatenated with the start pose, end pose, radius, and
endpoints of the grasped capsule. This concatenated vector
is passed through an encoder to yield an initial ”warm-start”
trajectory and tstep.

1) Generating Training Data: To generate training data,
we use Isaac Gym [36] to simulate an environment with a
rectangular bin that matches the real bin’s dimensions and fill
it with randomly sampled boxes with dimensions matching
our real setup. A virtual depth camera captures an overhead
depth image of the bin and converts it into a height map. To
closely match the distributions of boxes through the picking

cycle, we repeatedly select the topmost box using the same
prompting method as in real (using the ground truth box
shape instead of a SAM estimation) and remove it until the
bin is sufficiently close to empty. In experiments, the training
set consists of 25,000 simulated scenes generated from a
distribution of box sizes and box counts likely to appear at
test time, along with corresponding height maps, grasped
boxes, and time-optimized trajectories.

2) Warm-starting: Despite the widely varying bin contents
between scenes, we are able to learn a useful warm-start by
referencing the height map during training and inference.

At test time, we prompt the network with the trajectory
endpoints, grasped box parameters, and height map. We warm-
start the optimizer with the network’s predicted trajectory τ

and segment duration tstep.
We differentiate from DJ-GOMP, which does not include

a grasped box or the height map in the inputs to the neural
network. Furthermore, we predict tstep given a fixed H; DJ-
GOMP did the opposite. This change simplifies the neural
network architecture but requires interpolation to run on a
robot’s fixed-time-interval controllers.

F. Speeding Up Computation

We make several optimizations to speed up computation
at test time. We parallelize the Jacobian calculations for the
obstacle constraints (Equation 1) over 12 Intel Core i7-6850K
CPUs at 3.60GHz. Like DJ-GOMP [3], we solve only until
a collision-free solution is found. Empirically, the additional
solve time to find a fully optimal solution does not outweigh
the additional computation time cost to generate it.

V. E X P E R I M E N T S

We compare BOMP with two baselines: (1) an industry-
standard Up-Over-Down motion that lifts the grasped box
vertically, moves horizontally over the bin wall, then lowers;
and (2) a parallelized asymptotically optimal sampling-based
motion planner from Motion Planning Templates MPT [5]
with a subsequent time-parameterization step [4].

We compare the algorithms on compute time (time to
compute a trajectory given a suction point and grasped box



dimensions), execution time, total time (compute time +
execution time), and collision-free trajectory generation rate
(“success rate”). In physical experiments, we also report
“execution success rate” which considers the percent of all
experiments (including those which failed in generation)
where the robot successfully transports the box from start to
goal.

Due to reachability constraints associated with our robot,
suction tool, and environment, a fully vertical extraction
is often not possible. Thus, the Up-Over-Down baseline
performs a two-stage “up” motion. The first stage moves
the end-effector vertically as far as possible; the second stage
moves the box vertically as far as possible while pitching
22.5◦ back to enable the box to be raised higher when a
top-down grasp is no longer kinematically feasible. Due to
the deep bin (compared to the size of the robot), from most
locations in the bin, it is kinematically infeasible for the robot
to lift the box higher than the rim of the bin with a top-down
grasp.

We use MPT’s parallelized RRT* (PRRT* [28]), as it
is a fast asymptotically optimal planner. We configure it to
optimize for minimum path length in joint space. We run MPT
for 1 second (MPT-1), which is similar to BOMP’s generation
time, and MPT for 10 seconds (MPT-10), which has more time
to find and optimize a solution. While PRRT* will eventually
find a solution if one exists, it may fail with insufficient
planning time. Since the MPT baselines use random sampling,
we execute them three times each per scene and average the
metrics. We only include successfully computed trajectories
in the calculation for the time-based metrics.

We also perform ablations to assess the impact of warm-
starting and training the neural network on the height map.
We isolate the deep-learning warm-start by including cold-
started optimization with an empirically selected heuristic
tstep of 160 ms, labeled BOMP-t160ms in Table I and Table II.
We also consider the impact of the neural network knowing
the height map in BOMP-NH (“no heightmap”). For this
ablation, we perform neural network inference without an
input height map. As in DJ-GOMP [3], since additional SQP
solves empirically take more time to compute than they save in
execution time, we stop BOMP, BOMP-t160ms, and BOMP-
NH after they first find a feasible trajectory. To compare
against optimal execution times, we also show results from
the cold-started optimization when run to optimal convergence
(labeled BOMP-cold).

For both simulated and physical scenes, we model
a UR5 robot reaching into a deep bin (dimensions
1.06×0.562×0.46 m3) full of boxes. To allow the robot to
reach and manipulate boxes deep in the bin, we equip it with
the “bluction” tool from Huang, et al. [1] (blade and camera
attachments removed).

We fill the bin with cardboard boxes of assorted sizes.
We use between 5 and 15 boxes of each type to fill the
bin. For our experiments, we use boxes that are 4×4×2 in3,
6×4×3 in3, 7×5×2 in3, and 9×6×3 in3 because:

1) They represent a range of aspect ratios (which directly
affects the fidelity of the capsule model).

Fig. 4: Challenging grasp poses. In physical experiments, we observe that
using the long suction tool to grasp arbitrarily oriented boxes sometimes
results in challenging grasp poses such as the ones pictured here. While the
industry-standard Up-Over-Down method fails in these cases, BOMP is able
to generate fast, jerk-limited, collision-free trajectories.

2) The 6×4×3 in3 and 9×6×3 in3 boxes have the 6×3 in2

face in common. We demonstrate that our pipeline is
robust to this.

A. Simulated Experiments

We generate 114 simulated environments using the same
process used to generate neural network training data (de-
scribed in Section IV-E.1 and shown in Figure 3). However,
these scenes were not previously seen by the neural network.

We exclude generated environments where the initial grasp
is unreachable or results in an IK solution that is in collision.
Results are shown over the remaining 96 feasible scenes.

For each environment, we capture a simulated depth image,
convert it into a height map, and select the topmost box to
be removed. In simulation, rather than using SAM [31] to
determine box pose and size (Section IV-A), we use ground
truth box pose and size to inform the solvers of the grasped
box. We define the goal at a joint configuration where all
in-distribution grasped boxes can be held without collision.
For a fair comparison, we use the capsule model (Section IV-
C) to evaluate collisions for all planners and we carve the
height maps as in Figure 2 before solving.

We then use BOMP, baselines, and ablations to plan
trajectories that carry the selected box from its start point
to the endpoint. Table I displays computation success rate,
compute time, trajectory execution time, and total time
(compute time + execution time) from these experiments.

We find that MPT-10 and the cold-started BOMP ablations
have the highest success rate. With the warm-start, BOMP
strikes a balance between fast computation and fast collision-
free trajectories. It achieves a similarly high success rate to
MPT-10, a fast computation time close to BOMP-160ms, and
a fast execution time close to BOMP-cold.

Up-Over-Down achieves a slightly faster total time than
BOMP due to its negligible computation time, but Up-Over-
Down’s success rate is very low. This is primarily due to the
kinematic difficulty of safely vertically extracting arbitrarily



Algorithm Success Rate Exec. Time(s) Compute Time(s) Total Time(s)
MPT-1 69.44% 1.941±0.776 1.833±0.044 3.774±0.786

MPT-10 84.38% 1.941±1.023 10.872±0.049 12.813±1.042
Up-Over-Down 16.67% 1.689±0.225 0.837±0.158 2.525±0.293

BOMP-NH 80.21% 1.209±0.146 1.664±2.498 2.872±2.496
BOMP-cold 84.38% 0.982±0.352 33.696±20.067 34.678±20.002

BOMP-t160ms 84.38% 2.560±0.000 1.661±1.144 4.221±1.144
BOMP 78.13% 1.080±0.142 1.481±1.639 2.561±1.649

TABLE I: Simulated experiments results. In 96 feasible simulated environments, we execute 3 trials for the sampling-based methods (MPT-1 and MPT-10)
and 1 trial for the deterministic methods. MPT-10 and the cold-started BOMP ablations have the highest success rate. With the warm-start, BOMP achieves
a similarly high success rate while also achieving the fastest total time aside from the unreliable Up-Over-Down.

Algorithm Generation Execution Exec. Time(s) Compute Time(s) Total Time(s)Success Rate Success Rate

MPT-1 68.89% 53.33% 2.448±1.319 1.747±0.137 4.194±1.334
MPT-10 93.33% 66.67% 2.210±1.269 10.792±0.140 13.001±1.300

Up-Over-Down 6.67% 6.67% 1.432±0.000 0.710±0.000 2.142±0.000
BOMP-cold 86.67% 73.33% 0.884±0.279 34.074±14.616 34.958±14.590

BOMP 86.67% 80.00% 1.035±0.168 1.583±1.075 2.617±1.067

TABLE II: Physical experiments results. In 15 physical environments, we perform 3 trials for the non-deterministic MPT-1 and MPT-10 and 1 trial for the
deterministic methods. BOMP successfully executes the most trajectories and achieves the fastest total time (except Up-Over-Down, which only successfully
executes 1 trajectory). MPT-1 and MPT-10 generate the most theoretically feasible trajectories but their jerky, non-smooth trajectories result in several
dropped boxes and automatic protective stops during physical execution.

oriented boxes, where the suction normal is generally not
aligned to gravity (Figure 4).

BOMP-NH, without a height map of the environment, tends
to predict trajectories closer to “average” than BOMP. This
means larger (less optimized) values of tstep and trajectories
that are on average further from optimal. This explains
the increase in trajectory execution time and success rate.
The higher predicted tstep also means that it is less often
below the optimal value (i.e., infeasible). This results in
the slightly higher success rate. On average, BOMP-NH’s
computation time is 0.183 s higher than BOMP, suggesting
that the network’s knowledge of the obstacles through the
height map generates trajectories that are more favorable for
warm-starting.

In 93% of failure cases for BOMP-cold and BOMP-t160ms,
the target box starts in contact with the bin wall. In these
cases, the collision environment near the grasped box is
particularly dense. The warm-started BOMP and BOMP-NH
also occasionally under-predict the optimal segment duration
tstep, resulting in their slightly lower success rates.

B. Physical Experiments

We perform similar experiments using 15 physical setups
(see examples of the physical environment in Figure 2). We
use an overhead Intel RealSense D455 camera to capture
depth images for collision avoidance and RGB images for
segmentation. These images are 480×640 pixels, but we
downsample the height map to 30×40 for collision checking
(Section IV-C). We detect and select grasped boxes using the
full grasp selection pipeline (Section IV-A).

As in simulated experiments, we consider only scenes
with reachable, collision-free grasp poses. For the non-
deterministic MPT-1 and MPT-10, we average metrics across

three trials. The results of these experiments are in Table II.
In physical experiments, BOMP successfully executes the

most trajectories and achieves the fastest total time (compute
time + execution time) other than Up-Over-Down, which only
successfully executes 1 trajectory. While MPT-10 generates
the most theoretically feasible trajectories, these often result
in dropped boxes or automatic protective stops because its
trajectories are not jerk-limited. This particularly happens
when the trajectory turns sharp, high-jerk “corners” and at
the trajectory endpoint. BOMP computes a smooth trajectory
that better avoids protective stops and drops.

At execution time, the failure cases for BOMP and BOMP-
cold are primarily caused by approximation error during
carving (Section IV-D.3). The capsule model overestimates
the actual box volume, so it may intersect other obstacles.
The intersected parts of the obstacles are removed from the
collision model by the carving process. When the resulting
trajectories are physically executed, these trimmed obstacles
may dislodge the box from the robot gripper.

Up-Over-Down has an extremely low success rate in this
environment due to the complex grasp poses (not simply top
down). Figure 4 shows some example scenes with complex
grasp poses from which BOMP is able to compute a solution,
but Up-Over-Down is not.

V I . D I S C U S S I O N

We present BOMP, an optimization-based motion planner
integrated into an end-to-end bin picking pipeline. We
integrate a grasp and target box identification method using
the Segment Anything Model [31], and we warm-start the
motion planning optimization on the output of a deep neural
network trained to consider obstacles in the form of a height
map. We train the network offline on simulated data, then use



the trained network online to provide an initial guess of the
trajectory and its duration. We use this output to warm-start
the optimizer and speed up its convergence.

In 15 experiments in real bin scenes and 96 experiments
in simulation, BOMP outperforms heuristic and sampling-
based baselines in execution time by up to 36% and 58%
respectively, while generating jerk-limited trajectories. BOMP
also achieves the fastest total time (compute time + execution
time) among methods with comparable success rate.

In future work, we will address several limitations. We plan
to extend beyond known boxes to general unseen grasped
objects by using SAM [31] alongside a grasp planner such
as Dex-Net 3.0 [37]. We will also speed up SAM prompting
by using a smaller model fine-tuned for the bin.

We also plan to improve the fidelity of the capsule modeling.
The capsule model overestimates the extents of the grasped
box, so it sometimes carves into nearby obstacles. As a result,
the motion planner may find a solution that collides in real
since not all of the true collision environment is present in
the carved height map it uses to plan.

Within these limitations, though, BOMP significantly out-
performs baselines in speed while maintaining a comparable
or superior success rate.
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