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Abstract— In surgical practice, precise and careful suture
placement can reduce scarring and speed healing. Surgeons
rely on expertise to guide where they place suture needle entry
and exit points, but the complexity of wound geometry and
tissue dynamics makes it challenging for even experienced
surgeons to select suture placement. We extend our previous
2D suture planning algorithm with SP3DEEF: Suture Planning
3D Equalizing Elliptical Forces, an algorithm that outputs an
optimized suture plan considering forces acting on the wound
and surrounding tissue in 3D. In physical experiments with raw
chicken thighs, SP3DEEF was able to generate suture plans
that meet all specifications in under 60 seconds. When manually
executed with a surgical needle by an untrained engineering
student, the resulting suture plans completely closed all wounds
with little buckling or gaps.

I . I N T R O D U C T I O N

Suturing is a critical task in surgical procedures in which
tissue edges are approximated using thread [1]. The points
of surgical needle entry and exit define a suture plan. A
suture plan involves many trade-offs. For example, placing
sutures too close together can disrupt blood flow, but too
much separation will not properly bind the wound together
[2]. Depending on the spacing of sutures, patients suffer
scars, with symptoms including changes in color, hardness,
and itchiness, reported via the POSAS scale, a metric used
to evaluate scar quality. [2]. Suture placement also affects
the rate of complications post-surgery. Sutures exert forces
on the surrounding tissue, causing the deformation of the
surrounding skin. Improper tension in the sutures can lead to
infection or ischemic necrosis [3].

We extend our previous paper and SP2DEEF [4] and
present a 3D automated suture placement methodology,
SP3DEEF: Suture Planning 3D Equalizing Elliptical Forces,
an algorithm designed to generate an optimized 3D suture
plan, by following clinical guidelines and considering the
forces acting on the surrounding tissue. Wounds might not
lie on a part of the skin that is flat or orientable to be parallel
to a camera. In such cases, modeling the wound in 3D is
important to overcome perspective effects that are introduced
by projecting to 2D. Our previous paper [4] assumed that the
surgeon would provide points along a line representing the
wound. We relax this assumption by identifying the location
of the wound using Computer Vision.

This paper makes three contributions:
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1) The first application of Meta’s Segment Anything Model
(SAM) [5] to segment a human wound in an image.

2) Extension of the SP2DEEF algorithm to compute suture
plans for non-linear wounds in 3D.

3) Physical experiments suggesting that the algorithm is
able to generate suture plans that meet specified spacing
criteria.

Fig. 1: Algorithm outputs for wounds on curved 3D surfaces.

I I . R E L AT E D W O R K

Suture planning from images can be divided into four
stages: Wound Segmentation, 3D Tissue Modeling, 3D Suture
Planning, and 3D Needle Path Planning. Building on our
previous paper, Kamat et al. [6], this paper focuses on the
first three stages of this process and extends it to 3D wounds.

A. Wound Segmentation

Segmenting wounds from images is challenging due to
the diverse shapes, colors, body positions, background com-
positions and camera qualities. State-of-the-art methods for
wound image segmentation use machine learning techniques,
including supervised and unsupervised classification and
deep learning. Wang et al. [7] apply SVM based classifiers
to determine wound boundaries in images. Scebba et al.
[8] employed two deep-learning architectures to detect and
segment wounds and tested their performance on diabetic
foot ulcer images. Wang et al. [9] utilized the ConvNet,
based on an encoder–decoder CNN architecture, for wound
segmentation, infection detection, and healing progress pre-
diction. Meta’s Segment Anything Model (SAM) is a zero-
shot learning algorithm for segmenting user-defined objects
[5]. It allows various interactive prompts, such as points
or a bounding box, and produces object masks on various
segmentation tasks. Previous studies by Wu et al. [10] have
adapted the Segment Anything Model for medical image
segmentation tasks spanning different modalities such as
multi-organ segmentation, brain tumor segmentation from
MRI images and melanoma segmentation from tissue images.
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However, we believe ours is the first paper to apply SAM to
wound segmentation.

B. 3D Tissue Modeling

Previous studies have used Finite Element Modelling to
simulate the behavior of human tissue during suturing. Lapeer
et al. [11] present a finite element model of human tissue
suitable for use in a real-time computer-based simulator
to teach surgeons procedures, such as facial reconstruction
using tissue-flap repair. Yoshida et al. [12] propose a surgical
simulation system of tissue sutures using a 3D finite element
method developed from point clouds obtained with a 3D
surface measuring device. A surgeon can use the simulation
system to evaluate an appropriate suturing method to reduce
postoperative tissue extrusions. FEMs have also been devel-
oped to study the effect of different surgical excision shapes
on wound closure mechanics [13].

C. 3D Suture Planning

3D suture placement models aim to represent the mechanics
of wound closure more realistically than 2D models. Chanda
et al. [14] developed a 3D computational model of the tissue
with two layers and placed interrupted sutures to close a
diamond shaped wound with varying cross section. The force
requirements for each suture were estimated numerically using
a novel suture pulling technique and were found to be 0–5 N
with a maximum value at the center. Kam et al. [15] present
a 3D path planning algorithm to enable semi-autonomous
robotic anastomosis on animal tissue. The algorithm generates
a suture placement plan based on the locations of 3D near
infrared markers and updates the plan after each completed
stitch using a non-rigid registration technique. 3D force
optimization has other clinical applications besides suturing.
Patil et al. [16] proposed a method to optimize the curvature
and torsion along three dimensional channels or ribbons
designed for intracavity brachytherapy. One can view the
ribbons, a surface that follows the path of the wound, lying
on the surface of the tissue, as a model of the local area
around the wound. Thus, suture placement can be imagined
as placing sutures along the ribbon following the wound line.

D. 3D Needle Path Planning

The sub-task of planning how the suturing needle moves
through tissue has also been researched extensively. Tissue
occluding the needle and the deformable nature of the tissue
make the task of moving the needle through the tissue
challenging. Sen et al. [17] studied optimizing the needle
size and trajectory using sequential convex programming.
Schulman et al. [18] apply the transfer trajectory method and
adapt it for needle path planning. In a similar vein, van den
Berg et al. [19] explore knot tying, a sub-task in suturing
for which 3D needle location is crucial. Schorp et al. [20]
propose an interactive perception-based approach to tracking
surgical thread in 3D and apply it to perform the suture
“tail-shortening” task.

Fig. 2: 3D Distance Constraints. A simulated wound in 3D, where the
sutures placed at p1,0, p1,1 violate distance constraints. The wound spline is
shown in red, with three insertion points (red) and three extraction points
(blue). Here, α denotes the desired suture width, representing the Euclidean
distance between entry and exit points perpendicular to the wound axis.
γ is the ideal distance between sutures. The Euclidean distance between
extraction points p1,0 and p1,1 falls outside the acceptable range defined by
βmin and βmax, a violation of constraints. The arrow between p1,0, p1,1 is
split into green (proper placements) and red (improper placements) segments.

I I I . P R O B L E M S TAT E M E N T

Given a 3D tissue surface with a single embedded wound,
a thin contiguous area with no branches, we wish to find
a suture plan satisfying certain constraints on suture point
distances and imparting forces on the wound which close
the wound well while minimizing disruptive shear forces (or
report that no such placement exists). We formulate this as a
constrained optimization problem.

Assumptions: We assume that two images of the wound
are taken from two RGB cameras, forming a stereo camera
system, with known intrinsics, in a well-lit environment [21],
and that the wound is fully visible from both cameras and is
not occluded by other body parts. We assume that the wound
does not branch, and can thus be approximated as a spline
in x,y,z space, and that the surface immediately around the
wound can be estimated locally as a 3D surface. We assume
that blood has been cleaned from the surrounding skin to aid
wound recognition.

Parameters and Hyperparameters: Adopting similar no-
tation to our previous paper [4], consider the distance
parameters displayed in Figure 2. We let the distance between
the insertion and extraction points of a single suture be the
suture width, denoted α . The point halfway between the
insertion and extraction points, which lies on the wound, is
referred to as the wound point of the suture. Let the suture
distance be the Euclidean distance between two successive
wound, insertion or extraction points. We denote the ideal
suture distance as γ and set it to 5mm. This parameter can
be adjusted at the surgeon’s preference. We constrain that the
distance between any two sutures must be more than βmin
and the distance between any two consecutive sutures be less
than βmax, and we denote these constraints as Amin and Amax.
These constraints force the suturing plan to meet surgical
guidelines, informed by clinical expertise.

Loss Function: We define our loss function to be the



Fig. 3: Suture Planning 3D Equalizing Elliptical Forces (SP3DEEF). The inputs (shown at left) are the images captured by the left and right cameras;
the wound area is segmented out via SAM and points are converted to a disparity image via RAFT-STEREO to produce a segmented 3D point cloud from
which the tissue surface is reconstructed. Finally, the 2D wound mask is used to fit a 3D spline (green) and optimizes the rest of suture placement over the
reconstructed surface. SP3DEEF outputs the full suture plan overlaid on the original wound image (right).

weighted sum of separate loss functions. Ld is the Mean
Squared Error (MSE) of the suture distances of the wound
points from γ , measuring deviation from the ideal suture
distance, and cd is the weight of this loss. Let Li, Lw and
Le be the variance in suture distances of, respectively, the
insertion points, wound points and extraction points; let ci,
cw, and ce be the corresponding weights in the overall loss
function, which were set based on surgical advice about
the relative importance of each of these factors. Given the
insertion and extraction points, our force model predicts the
forces that each suture will impart on the wound. We consider
the sum of all the forces acting on a particular point on the
wound line, and we project the force onto the directions
parallel and perpendicular to the wound. We denote the force
perpendicular to the wound line as the closure force and the
force acting along the wound line as shear force. Let the
MSE of the closure forces from an ideal value be L f , and
let the average squared shear force be Ls, with associated
weights c f and cs.

Variables: Let n be the number of sutures that the final
suture plan has. Although, strictly speaking, this stays constant
during the optimization, we attempt optimization for a range
of values, based on the dimensions of the wound. Additionally,
let ℓ be the length of the wound. Consider a spline, P(s), fit
to the shape of the wound, parameterized by a single variable,
s, such that s = 0 at the start of the spline, and s = 1 at the
end. In this formulation of the problem, we set the initial
insertion and extraction points to be α

2 away, in directions
perpendicular to the spline. Thus, we can specify the position
of the sutures entirely with the position of the wound points
along the spline. Hence, the wound points are the decision
variables over which we optimize. Specifically, this paper
considers si, for i∈ [0,n), with 0≤ s0 ≤ s1...≤ sn−1 ≤ 1, such
that P(si) yields the ith wound point.

Outputs: The system outputs an ordered list of insertion
and extraction points, p0,i and p1,i, projecting them back onto
the 3D surface for the surgeon to reference. The algorithm
outputs the loss associated with the placement with lowest
loss. If the suture plan violates any of the constraints set out
in the problem, this is considered a termination.

Objective:

The optimization problem is given by:

min
{s0,...,sn−1}

cdLd + ciLi + cwLw + ceLe + c f L f + csLs

s.t. Amin, Amax, 0 ≤ s0 ≤ ·· · ≤ sn−1 ≤ 1
(1)

I V. M E T H O D O L O G Y

The SP3DEEF algorithm is an extension of the
SP2DEEF algorithm from [4] to 3D, along with additional
automation (specifically of identifying the wound trajectory).
The algorithm can be split into the following phases:

A. 2D Mask Generation: using our input of a stereo pair of
images of the wound, Meta’s Segment Anything Model
(SAM) is used to segment the wound area.

B. 3D Transformation: RAFT-STEREO [22] is used to
generate a 3D model of the ribbon and surrounding
wound area from the pair of masks, and a mesh is created
represent the surface.

C. Spline Fitting: a spline in 3D is used to geometrically
define the suture area of segmented wounds, insertion
points, and extraction points as three parallel 3D splines.

D. Optimization: the system plans the placement of sutures
along the ribbon representing the wound, subject to
constraints and objective function, by estimating the forces
that the tissue is experiencing.

E. Adjustment: the surgeon is shown the suture plan and can
make final adjustments as desired.

A. 2D Mask Generation

SAM is used to segment the wound area in the entire
image. SAM has various prompts to assist in identifying
the wound’s location, including indicating the image’s fore-
ground and background and selecting a rectangular portion
of the image for segmentation. We fed the images with
bounding boxes indicating the wound region into SAM,
using the SAM ViT-B model checkpoint, available at:
https://github.com/facebookresearch/segment-anything, using
a 8GB 2022 M2 MacBook Air for inference.



B. 3D Transformation

RAFT-STEREO is used to transform the 2D geometric
information of wounds in the image into 3D, using a disparity
image generated from a pair of images. We apply the mask
generated by SAM to filter out the non-wound areas from the
disparity image. Then, the intrinsic and extrinsic matrices of
camera, along with the segmented disparity image, are used
to make a 3D pointcloud [22], and the CGAL implementation
of Advancing Front Surface Reconstruction [23] is used to
produce a mesh.

C. Spline Fitting

To fit the wound spline, having extracted the mask from
both views, the left mask is picked arbitrarily. Firstly, we
retain the largest connected component of the mask, to prevent
noise from affecting the spline. We then dilate the mask with
a kernel of 5 pixels, meaning that all pixels within a 5 pixel
radius of the mask are included in the new mask. We fill
in the holes in the mask that might interfere with spline
detection. We then skeletonize the image using a method
from [24] to reduce the mask to a single pixel wide. To fit a
spline to these points, we need to prune extraneous branches
and order the points along the wound. We construct a graph
where adjacent pixels in the mask have edges between them
and then find the longest path in the resulting graph which
yields a branch-free ordered set of points along the wound.
We then interpolate a spline to fit these points based on the
method presented in [25], with smoothing applied to generate
the spline.

Next, we formulate a ribbon, similar to [16], which follows
the wound spline and lies on the wound surface. To fit splines
to potential insertion and extraction points, we first sample
points on the wound spline. For each sampled point P(si), we
consider the derivative of the wound spline at P(si), dP

ds (si).
We then sample the nearest 100 points lying on the mesh,
which gives us a good approximation of the surface close
to P(si), and use least squares to fit a local plane to the
surface. Then, we take the cross product of the normal of
the plane and the derivative vector to get a vector that lies
on the plane, but is also perpendicular to the spline. We
follow the vector in both directions at a distance of α/2 to
generate the insertion and extraction points. Note that this
procedure results in sutures that are perpendicular to the
wound, with insertion and extraction points at a distance
of α/2 away from the wound, as required. Using these
generated points, we fit two more smoothed splines using
scipy.interpolate.UnivariateSpline.

D. Optimization

It is important that forces acting to bring the two sides of
the wound together be consistent, sufficient to close the wound
but not too great to cause adverse effects [26]. Additional
factors such as the proximity of insertion and extraction points
to each other are also important to patient recovery.

SP3DEEF extends SP2DEEF [6] to the case of a curved
wound on a curved surface in 3D. In particular, we assume the
wound is a 1D curved spline on a 2D manifold embedded in

3D space. The SP3DEEF optimization problem is non-convex,
hence we use the Sequential Least Squares Programming
algorithm [27] as an efficient way to optimize a non-convex
objective function over few variables. To explore a range of
values for n (the number of sutures), we first approximate
the optimal number of sutures by n̂ = ⌊ ℓ

γ
⌋, as SP2DEEF

did, and then proceed to perform optimization for integer
n ∈ [0.5 ∗ n̂,1.4 ∗ n̂]. This range of values allows us to test
a variety of suture plans and select the one that has the
minimum loss without being too computationally expensive.

Suture Regularity: To ascertain suturing distances, we must
first determine how to place the insertion and extraction points,
given the ith wound point, that is, P(si). We use the insertion
and extraction spline to calculate the corresponding locations
of the insertion and extraction points. Letting p0,i and p1,i
be the ith insertion and extraction points, our constraints are
as follows: βmin ≤ ∥p0,i − p1,i∥ < βmax, and that p0,i − p1,i
does not cross p0, j − p1, j for any i ̸= j. As in [4], we add
‘phantom’ sutures at the start and end of the wound, denoted
s−1 = 0,sn = 1. The distance and variance loss terms are:

Ld(s0, . . . ,sn−1) =
1

n+1

n−1

∑
i=−1

(∥P(si+1)−P(si)∥− γ)2 (2)

Li(s0, . . . ,sn−1) = Var
(
{∥P(si+1)−P(si)∥}n−1

i=−1
)

(3)

with Le and Lw being calculated identically to Li, except with
the extraction and wound points rather than insertion points.

Elliptical Forces: To obtain estimates for forces along the
wound, we must develop a model of how forces propagate
through tissue. When the wound is a straight line and lies on
a planar surface, a useful model of force distribution is the
Diamond Force Model [28]. In the Diamond Force Model,
the force imparted by a single suture is at a maximum where
the suture intersects the wound, and decreases linearly to
zero as you move along the wound away from the suture.
However, this formulation requires extension for non-linear
wounds.

Fig. 4: SP2DEEF (Elliptical Force) Model. The SP2DEEF model applied
to sutures of width α around insertion point p0,i is shown as a region of
nonzero force imparted from p0,i, with forces decreasing linearly from the
center, with elliptical isocontours. Green and orange arrows represent shear
and closure forces generated at the wound point w by p0,i.

In our previous paper, we proposed the SP2DEEF (Ellipti-
cal Force) Model, depicted in Figure 4. A suture is considered
to impart forces on the skin from the insertion and extraction
points, which pushes the wound closed from both sides. The



magnitude of the force decays linearly in both the direction
parallel and perpendicular to the suture; as in the Diamond
Force Model, the forces imparted by a given suture are always
parallel to it. This creates concentric ellipses of equal force
with the magnitude of the force decreasing linearly to zero
as the ellipses get further out. For each point on the wound,
the total insertion force is the sum of the forces imparted
on it from insertion points; likewise, the total extraction
force is the sum of forces imparted on it from the extraction
points. The interaction between the total insertion force and
total extraction force then produces the closure and shear
forces (respectively, perpendicular and parallel to the wound).
However, allowing the surface of the tissue to exist in 3D
adds extra complications.

To compute the force that a single insertion point p0,i
exerts on a wound point w, we need to know: (a) the angle
of the force at w; (b) the magnitude of the force at w. We
first calculate the angle at which the force is felt. We find
the vector, c⃗ from p0,i to w on the mesh representing the
surface. We project this vector onto the tangent planes of the
surface at p0,i and w. Then the angle θ between c⃗ and the
direction of the suture (given by p1,i − p0,i, projected onto
the tangent plane at p0,i) is computed; the force felt at w is
then at an angle of θ from c⃗. We denote the direction of the
force imparted by p0,i on w as up0,i(w). The distance between
w and p0,i is then the Euclidean distance in 3D. Given this
distance ∥w− p0,i∥ and angle θ , the magnitude of the force
fp0,i(w) is computed as in the elliptical force model from [4]:

fp0,i(w) = max(η −∥w− p0,i∥
√

cos(θ)2 +ξ 2 sin(θ)2,0) (4)

where η is the maximum force from a single suture (felt at
p0,i itself) and ξ > 0 is the ratio of the force ellipse’s axes.

To calculate the total force felt at a point w = P(s) on the
wound, the total insertion and extraction forces are computed:

Fin(s) =
n−1

∑
i=0

fp0,i(w)up0,i(w) (5)

Fex(s) =
n−1

∑
i=0

fp1,i(w)up1,i(w) (6)

The total force experienced in bringing the wound together at
w = P(s) is then Fin(s)−Fex(s). Let the normalized tangent
of the wound at w be dP

ds |s, and the normalized vector
perpendicular to the spline be Pnorm|s. Then,

Fshr(s) = (Fin(s)−Fex(s))⊤
dP
ds

|s (7)

Fcls(s) = (Fin(s)−Fex(s))⊤Pnorm|s (8)

From here we calculate our closure and shear force losses.
As shear forces act to pull the tissue away from its original
position, the ideal amount of shear force is zero. For closure
forces, we let the ideal amount of force, Fidl be the amount
of force that a wound point would experience if it was held
in place by sutures exactly γ away, on a straight wound.
Assuming we choose m points along the spline to evaluate

our closure and shear forces at t0, t1, ..., tm−1, we have that

L f =
1
m

m−1

∑
j=0

(Fidl −Fcls(t j))
2 (9)

Ls =
1
m

m−1

∑
j=0

Fshr(t j)
2 (10)

V. P H Y S I C A L E X P E R I M E N T S

Two Allied Vision Prosilica GCX 1920 cameras were used
to capture images. We experimented on chicken thigh skin,
due to its similarity to human skin. A wound was made into
the thigh with a scalpel. We indicated the location of the
wound in both photos, and then fed the spline detected into 1)
The SP2DEEF algorithm, 2) A baseline that equally spaced
sutures in 3D, and 3) the SP3DEEF alogrithm. To compare
all of the algorithms on equal footing, we projected the output
of SP2DEEF into 3D, and calculated the loss that our 3D
loss function estimated.

Fig. 5: Example. Upper Left: Image of a non-linear wound on fresh chicken
skin. Upper Right: Output of SP3DEEF: suture needle entry and exit points
Bottom: The executed suture plan. Note that the visible suture thread (above
the skin) links the stiches (below the skin, shown in blue) which hold the
wound close.

We analyzed three wounds. The SP3DEEF placement from
the algorithm met all spacing conditions. Pushpins were
used to indicate the location on the chicken of the insertion
and extraction points. Then, the wound was sutured using
USP Size 2-0 thread and GS-22 suturing needle. SP3DEEF
suturing plans were able to achieve wound closure in all
cases. An expert surgeon (Danyal Fer, Department of Surgery,
Emory School of Medicine, with over 5000 hours of surgical
experience) assessed that, given the ability to adjust the width



of the sutures and the desired distance between sutures to
what the wound necessitated, the resulting suture plans are
appropriate.

The surgeon did make some comments on the placement
generated for wound 3. In their assessment, a suture should
have been placed directly in the corner, which SP3DEEF did
not do. In addition, the spline was unable to fit well to the
sharp corner of the wound, leading to the actual distance
from the edge of the skin to the suture being too small.

V I . C O N C L U S I O N

A. Limitations

This work has the following limitations:
• As we do not have authorization to perform live animal

experiments, we do not have data on wound healing or
POSAS scar assessment.

• As with previous work, the wound is represented as a
spline in one variable, and cannot have any branches.

• We assume that a fixed α suffices for the whole wound.
However, it might be the case that certain sections
warrant sutures that are longer or shorter.

• Wound depth and variations in skin thickness and
elasticity are not taken into account.

• Wound deformation during the suturing procedure is not
considered.

B. Future work

We plan to perform more experiments and extend SP3DEEF
with an interactive interface to facilitate surgeon modification
of suture plans. To account for branching wounds, we will
develop an algorithm that separately solves the branches, and
intelligently combines the separate plans together. To account
for wound deformation during suturing, we will develop
a model that computes the next suture placement given a
partially sutured wound, in response to wound deformation.
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